
TWO-WEEK LOAN COPY 

This is a Library Circulating Copy 

which may borrowed for two weeks. 

For a personal copyy call 

Tech. Division; 6782. 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain conect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any wmTanty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



M. 

DRAE"l' 

~ for lirni ted circulation for the 
purpose of review and comment only 

MIGRA'riON OF RADIONUCLIDES THROUGH SORBING MEDIA 

ANALY'I'ICAL SOLUTION ~ I 

. ~ ·1· K H' h.a/ 
1 P. L. l\L Eog la 1 • • 1gas 1- 1 

F. , D. Leung, T. H. Pigford, D. Ting 

a/ siting Professor, 
University of Cali 
Permanent address: 

Nuclear Engineering, 

University, Kyoto 1 Japan. 

b/ Permanent address: JGC Corporation, Tokyo, Japan. 





DRAFT 

CONTENTS 

1. Introduction 

2. Radionuc1ide Transport Equation 

2.1 Introduction 

2.2 Transport Equation for Radionuclide in Porous Media 

2. 2. 1 

2 . 2 . 2 

General transport equation in porous media 

Equation of continuity 

2.3 Governing Equation of the Radionuclide Migration 

2 ' 3 . 1 

2. 3. 2 

2.3.3 

2o 3' 4 

2 ' 3 ' 5 

Simplifying assumptions 

Transport with local chemical-sorptive equilibria 

One dimensional transport with local chemical

sorptive equilibria 

One dimensional transport without local chemical

sorptive equilibrium 

Transport along interface 

3. Nuclide Release Modes 

3.1 Introduction 

3.2 Nuclide Release Modes 

3.2.1 

3' 2. 2 

Constant rate of dissolution of waste material 

Nuclide-dependent Fractional Rate of Dissolution 

3.3 Boundary Conditions and Source Terms 

3.4 General Superposition Equation for Band Release 

4. Recursive and General Solutions of the Transport Equation 

for Nuclide Migration 

i 



DRAFT 

CONTENTS 

4.1 Introduction 

4.2 Solution of the Transport Equation with a Nuclide 

Source 

4. 2. 1 

4. 2. 2 

Recursive solution of transport equation 

Concentration of the i~th nuclide in a 

decay chain 

4.3 Recursive Solution of the Transport Equation with a 

Concentration Boundary Condition 

4.4 Recursive and General Solutions of Transport Equation 

without Dispersion 

4.4.1 Recursive Solution of Transport Equation with

out Dispersion and Some Properties of the 

Solution 

General Solution of the Transport Equation 

without Dispersion 

4.5 Local Secular Equilibrium 

5. Application of the General Solution 

5.1 Introduction 

5.2 Application of the General Solution of the Transport 

Equation without Dispersion 

5. 2. 1 Solution for preferential release mode 

5 . 2 • 2 Solution for exponential release mode 

5 • 2 . 3 Solution for step release mode 

5, 2, Lr Solution for band release mode 

5. 2. 5 Solution for impulse release mode 

ii 



iii 

DRAFT 

CONTENTS 

5.3 Application of General Solution - Solution of the 

transport equation for three member decay chain 

with plane source and dispersion 

5.4 Application of General Solution -- Solution of the 

transport equation for three member decay chain with 

dispersion and the concentration boundary condition 

5.5 234U 230Th 226R D Ch . M' . B h . + + _a ecay a1n 1grat1on e av1or 

5.5.1 Input data and parameters 

5 . 5 . 2 ' ' 234 230 226 Concentrat1on prof1les of U+ Th+ Ra 

5. 5. 3 Maximum concentration and isopleth of 
226

Ra 

5.5.4 Parametric study 

5 . 6 237 233 233 229 225 ' ' . Np+ Pa+ U+ Th+ Ra Decay Cha1n M1grat1on 

Behavior 

5. 6. 1 Reduction to a three-member decay chain 

5. 6. 2 .. h f'l f 237N 233u D1sc arge rate pro 1 es o p+ + 

229 225 ' Th( + Ra) decay chaln 

6. Nuclide Migration through a Geological Medium of Multi-Layers 

6.1 Introduction 

6.2 Transport Equation and Boundary Conditions at the 

Layer-Boundary 

6.3 Analytical Solution for Non-Dispersion Case 

6.4 Application of the Recursive Solution to a Two-Media 

System 



6 . 4 . 1 

6 • 4 • 2 

6' 4' 3 

DRAFT 

CONTENTS 

General release mode at the repository 

Step release 

Step solution in a two~media system for 

three members decay chain, no dispersion 

6,5 Recursive Formula for a Two~Media System with 

Dispersion 

7. Conclusion 

8. Nomenclature 

9, References 

Appendix 

iv 



DRAFT 

LIST OF FIGURES 

Page No. 

Figure 2.1 A scheme of the averaging volume domain 

comprising the solid and fluid phases 

Figure 3.1 Boundary condition at the repository (z~O), 

diffusional transport in flow direction only 

Figure 3.2 Dissolution as a volumetric source term 

Figure 4.1 Domain of complex variable 

Figure 4.2 A scheme of the concentration against time at 

fixed position 

Figure 4.3 A scheme of the concentration against position 

at fixed time 

Figure 4.4 Illustrative functional behavior for local 

secular equilibrium 

Figure 5.1 Nuclide concentrations against time in the re-

p o s i to r y f o r the 2 3 4 U ... , 2 3 0 T h -7 

h . (P 234u c aJ.n ure source at t=O. 

226 
Ra decay 

H.=atoms of 
l 

i-th nuclide, M~= atoms of 
234

u at z=t=O) 

2.3 

3.10 

3.12 

4.5 

4.31 

4.32 

4.47 

5.26 

Figure 5.2 Comparison of concentration profiles for differ- 5.32 

ent source b d d . . f h 234 230 h oun ary con 1t1ons or t e U+ T + 

226 . 4 234 
Ra decay cha1n at t=5xl0 yr (Pure U source 

3 0 3 
at t=O. N.(z,t)=atom/cm . N

1
=atom/cm of U at z=O, 

J. 

4 4 4 
t=O. v=lOOm/yr, T=3xl0 yr., Ku=lxlO , KTh~SxlO , 

2 
KRa=5xlO ) 

v 



DRAFT 

LIST OF FIGU S 

l::_age No, 

Figure 5.3 Concentration profiles of 234 u+ 230 Th+ 226 Ra 

decay chain at t = lxl0
4 

yr. (Pure 
234

u 

source at t=O. 

3 234 
em of U at z=O, t~O. V=lOOm/yr. 

4 4 4 2 
T=3xl0 yr., KU ~ lxlO , KTh= 5xl0 , KRa=SxlO ). 

5.37 

Figure 5.4 Concentration profiles of 
234

u+ 
230

Th+ 
226

Ra 5.38 

Figure 5.5 

decay chain at t=5xl0
4 

yr. (Pure 
234

u source at 

t=O. 
3 0 3 N.(z,t) =atoms/em , N

1 
=atoms/em of 

1. 

234 u at z=O, t=O. V=lOOm/yr. T 3xlo 4 yr. 

Concentration profiles 

decay chain at t = lxl0
5 

yr. (Pure 
234

u source 

3 l 
at t = 0. Ni(z,t) =atoms/em . N

0
=atoms/cm3 of 

234u at z = 0' t 

4 
yr. Ku = lxlO , 

= 0. 

KTh 
~ 

4 
V=lOO/m yr. T = 3xl0 

5xl0
4

, KRa = 5xl0
2
). 

Figure 5.6 Concentration profiles of 
234

u+ 
230

Th+ 
226

Ra 

. 5 234 
decay cha1n at t = 2x10 yr. (Pure U source 

at t ~ 0 N.(z,t) 
1 

234 u at z=O, t=O. 

3 0 = atoms/em • N
1 

= atoms/cm3 of 

4 
V = lOOm/yr. T = 3xl0 yr. 

5 '39 

5.40 

vi 



DRAFT 

LIST OF FIGURES 

"L'' 57 C . f'l of 234 u+ 230 Th+ rlgure . oncentrat1on pro 1 .es 

226
Ra decay chain at t = 4 

lxlO yr. (Trans~ 

ient equilibrium sources at t=O. N.(z,t) = 
l 

I 3 No I 3 r 234u_ 0 atoms em. r
1 

=atoms em or at z= , 

0. V""lOOm/yr. 
4 4 

t T 3xl0 yr. Ku=lxlO , 

KTh"" 5xl0
4

. KRa = 5xl0
2
), 

Figure 5.8 Concentration profiles of 
234

u+ 230 Th+ 

226 
Ra decay chain at t 

4 
5xl0 yr. (Trans~ 

ient equilibrium sources at t = 0. Ni(z,t) = 

atoms/cm
3

. N~ ~ atoms/cm
3 

of 
234

u at z=O, 

t=O. V=lOOm/yr. T=3xl0
4 

yr. Ku=lxl0
4

. 

KTh = 5xl0
4

. KRa a 5xl0
2
). 

Figure 5.9 Concentration profiles of 
234

u+ 
230

Th+ 

226 Ra decay chain at t lxl0
5 

yr. (Trans~ 

ient equilibrium sources at t = 0. N.(z,t) 
l 

3 
atoms/em . 

V=lOOm/yr. 

N° = atoms/cm
3 

of 
234

u at z=O, t=O. 
1 

T - 3xl0
4 

yr. KU = lxl0
4

. KRa=5xl0
2

) 

5 1 0 . f . " f 2 3 4 2 30Th Figure ·~ Concentrat1on pro 1Les o U+ + 

226
Ra decay chain at t=2xl0 5 yr. (Trans-

ient equilibrium sources at t = 0. N.(z,t) 
l 

3 0 3 234 atoms/em . N1 = atoms/em of U at z = 0, t = 0. 

V=lOOm/yr. T = 3xl0
4 

yr. KU = lx10
4

, KTh= 5xl0
4

, 

2 
KRa = 5xl0 ) . 

vii 

5. 43 

5.44 

5.45 

5. 4 6 



Figure 5.11 

Figure 5.12 

Figure 5.13 

Figure 5.14 

DRAFT 

LIST OF FIGURES 

Effect of dispersion coefficient on the 

maximum concentration of 226Ra f h 234u _ or t_ e + 

230Th 226R d .h • + a ecay c a:tn, 234 
(Pure U source 

at t"'O. N.(z,t) 
1 

3 0 3 
atoms/em , N

1 
~ atoms/em 

of 234 u at z~o, t~o. v~100m/hr. T=3xl0 4yr. 

4 2 
KU = lxlO , KRa = 5xl0 ). 

Effect of dispersion coefficient on the 

maximum concentration of 226R f h 234u a or t e + 

230T~h 226R d h . + a ecay c .a1n. (Transient equili~ 

brium sources at t~O. N.(z,t) ~ atoms/cm 3 · 
1 

0 3 234 N
1 

~ atoms/em of U at z~O, t=O, V=lOOm/yr, 

4 4 2 
T=3xl0 yr. KU = 1xl0 . K =5xl0 ) . Ra 

Isopleths of 
226

Ra for the 
234

u+ 230 Th+
226

Ra 

decay chain. 

atoms/cm
3 

(p 234.u o N ( ) ure source at t= , . z,t 
1. 

N° = atoms/em 3 of 234 u at z=O, 
~i 

~ 2 
KTh = 5xl0 ', KRa = 5xl0 , 

decay chain, (Pure 
234

u source at t•O. N.(z,t) 
1. 

I 3 o 1 3 234u 0 0 = atoms em , N
1 

= atoms em of at z= , t= . 

% 3 2 4 4 
V=lOOm/yr. D=lxlO m /yr. T~3xl0 yr. Ku=lxlO , 

KTh = 5xl0
4

. K 5xl0
2

) ' Ra 

viii 

No. 

5.48 

5.49 

5,54 

5. 55 



DRAFT 

LI ES 

F . 5 15 - 1 h E 226R f th 234~ 230T.h 1 g u r e . , l sop e t s or a o :r e u+ + 

226 Ra d.ecay c·hal·n. ("1' · 'l"b · rans1ent equ1 1 r1um 

3 0 sources at t~o. N.(z~t) ~atoms/em . N
1 

= 
l 

3 234 
atoms/em of U at z•O, t=O. V=lOOm/y:r. 

D=lxl0~ 1m 2 /yr. T~3xl0 4 yr. 
4 2 

5xl0 , KRa~SxlO ). 

Figure 5.16 Isopleths of 226 Ra for the 234 u+ 230 Th+ 

226R d 1 . . a ecay c:1a1n. (Transient equilibrium 

sources at t=O. Ni(z,t) atoms/cm
3

. N~ = 
3 234. atoms/em of U at z=O, t=O. V=lOOm/yr. 

4 D=lxl0 3 /m 2 /yr. T=3xl0 4yr. 

5 x10
4

. KRa = 5xl0
2
). 

K "" u lxlO . KTh= 

Figure 5,17 Effect of sorption equilibrium constant on 

concentration profiles of 226 Ra at t=SxlOb/yr 

for the 234 u+230 Th+ 226 Ra decay chain. (Pure 

234 3 0 
U source at t=O. N.(z,t) =atoms/em . N

1 
= 

l 

atoms/cm 3 of 234 u at z=O, t=O. V=lOOm/yr, D= 

~1 2 
lxlO m /yr. 

2 
KRa = 5x10 ). 

4 4 4 
T=3x10 /yr. K0 =1xl0 , KTh=SxlO 

ix 

Page No. 

5. 56 

5.57 

5.60 



DRAFT 

LIST OF FIGURES 

Page No. 

Figure 5.18 Effect of sorption equilibrium constant 

on maximum discharge rate of 
226

Ra for the 

234
u+

230
Th+ 

226
Ra decay chain, with 

(Pure 
234

u source at 

Ni(z,t) = atoms/cm
3

. N~ = atoms/cm
3 

of 
234

u 

at z=O, t~o. V=lOOm/yr. T~3xl0 4 . K
0

=lxl0
4 

KTh 5xl0
4 

KRa=5xl0
2
), 

Figure 5.19 Effect of sorption equilibrium constant on 

226 
maximum discharge rate of Ra for the 

234 30
Th+

226
Ra decay chain, with D=lxl0 3m

2
/yr. 

(Pure 
234

u source at t=O. N1 (z;t) = atoms/cm
3

• 

. o I 3 N
1 

"" atoms em 

- ,~,, 

T=3x10 /yr. K
0 

of 
234

u at z=O, t=O. V=lOOm/yr . 

= 1x10
4

. KTh=Sx10
4

. KRa=5xl0
2
). 

Figure 5.20 Effect of leach time on the maximum discharge 

f 226 f h rate o Ra or t e 

h- · · h. ·n · 10~ 1 2 I c aJ.n, w1.t'- =lx m yr. /P 234u_ \ ure source at 

4 4 4 
t-0. V=lOOm/yr. T=3xl0 yr. K0 =lxl0 KTh = SxlO . 

2 
KR

8
=5xl0 ) . 

Figure 5.21 Effect of leach time on the maximum discharge 

226 - 234 230 226 rate of Ra for the U+ Th+ Ra decay 

t=O. V=lOOm/yr. 

2 
KR

8
=5xl0 ). 

234 
(Pure U source at 

5.64 

5.65 

5.67 

5.68 

X 



DRAFT 

LIST OF FIGURE 

Figure 5.22 Effect of leach time on the highest dis 

charge rate of 
226

Ra for the 
234

u+ 230 Th+ 

226. d Ra ecay chain. (V""lOOm/yr. T""3xl0
4
yr. 

4 2 
KTh=SxlO • KRa=SxlO ) • 

Page No. 

5. 70 

Figure 5.23 Concentration profiles of 
225

Ra of 237 Np+
233

Pu+ 

(Pure 
237

Np 

4 
T""3xl0 yr. 

KTh=5xl0
4

. 

source at t 0. V=lOOm/yr. 

0
2 1 o4 . - 10 4 

~1 . KP ~ xl • K0 =1x . p u 
2 

KRa""SxlO ). 

Figure 5.24 Effect of dispersion coefficient on maximum 

d . h ~ 225R f h 237N 233p 1sc arge rate OL a or t e p+ u+ 

Z33U+ 229 Th+ 225 Ra decay chain, (Pure 
237

Np 

Figure 6.1 Multi layer pathway 

Figure 6.2 Two media system with dispersion 

5. 7 6 

5.77 

6.03 

6.17 

xi 





1' 1 

DRAFT 

1. INTRODUCTION 

This report presents analytical solutions for the 

transport of radionuclides through porous sorbing media. 

These solutions are developed to serve as analytical stand

ards for benchmark checking of numerical solutions and to use 

as predictive techniques. 

The basic transport equation is derived and is sim

plified for the case of one-dimensional transport through iso

tropic porous media, with local chemical equilibria between 

radionuclides in water solution and sorbed by the solid, 

Analytical solutions in the present report are limited to this 

simplified model and are also limited to an infinite plane 

source of dissolving radionuclides. 

Possible modes of release of radionuclides from the 

waste solid into the ground water are examined. Release-mode 

equations and boundary conditions are developed for the cases 

of (a) a constant overall rate of dissolution of the waste matrix 

and its contained radionuclides and (b) a constant fractional 

rate of dissolution of each radionuclide species. Each release 

mode can be written in terms of a concentration boundary condi

tion foreach radionuclide at the point of dissolution, which is 
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applicable if transport by liquid diffusion at the waste 

location can be neglected, or, more generally, as a volu

metric source term to be used directly in the transport 

equation. 

A finite dissolution rate of the waste material re

sults in a "band release", wherein a chromatographic band of 

the released radionuclides propagates outward through the 

geologic medium, In Chapter 3 a superposition theorem is 

developed such that the relatively complicated equations for 

band release can be constructed from the simpler solutions for 

a "step release", which assumes that the waste material dis

solves at a finite rate over an infinite period of time. 

1.2 

In Chapter 4 recursive and general solutions of the 

transport equation, with and without dispersion, are presented. 

Solutions are presented for individual members in a three

member decay chain and also for any member in a decay chain 

involving an arbitrary number of members, 

In Chapter 5 the recursive and general solutions are 

applied to the various release modes, including the limiting 

cases of impulse release and step release, for an infinite 

geologic medium surrounding the radioactive waste, The solutions 
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are demonstrated for the three-member chain 

230T.. 226 b.--·--"'> 

which is of practical importance in the analysis of possible 

long-term environmental releases from high-level waste re 

positories" Effects of the alternative source boundary con-

ditions are demonstrated" The properties of the maximum con 

centration of Ra-226. its increase with distance from the re 

pository, and its elative insensitivity to the dissolution 

rate, are illustrated. 

The analyt cal solutions are also demonstrated for 

the adionucl de chain 

which is al o ortant in analyses of long term environmental 

effects" 

ln Chapte 6 th g nera solut ons are applied to multi-

layered geologic media and expl citly for a two-media system 

con sting of a medium o finite hickness adjacent to the 

r d oactive waste, sandwich d between infinite half spaces of a 

second medium" lie t solutions are developed for a three-
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member decay chain without dispersion. A recursive formula 

is developed fo the system with dispersion. 

In the Appendix is presented a simple computer pro

gram written to demonstrate the migration features of radio

nuclides in a three-member chain 1 with and without dispersion. 

The analyses presented herein were developed in part 

under financial support from the University of California and 

were extended under financial support from the Office of Waste 

Isolation (ONWI) of the U, S. Department of Energy. Work under 

ONWI support performed during the period April 1 through August 

31, 1979 is included in this report. The ONWI Project Officer 

is Dr. H. C. Burkholder. 

1.4 

More detailed demonstration of the use of these equations, 

as well as analytical solutions for non-equilibrium sorption and 

multidimensional cases, will be the subject of future reports. 
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2. THE RADIONUCLIDE TRANSPORT EQUATION 

The accurate prediction of the probable pattern of 

contaminant migration is of primary concern in the evalua

tion of geological disposal of high~evel radioactive waste. 

This chapter is concerned with the formulation of the basic 

differential equation for the transport of radionuclides in 

a geological medium saturated with groundwater. Section 2.2 

contains a discussion of the transport equation for porous 

media. In Section 2.3 alinearized formulation is discussed. 

2.2 Transport Eguation for Radionuclides in Porous Media 

In this section the equations for transport of radio

nuclides through porous media will be developed with the aid 

of the averaging concept for a heterogeneous water-solid 

medium, as proposed by Whitakker (Wl) and Slattery (S2). 

2. 2. 1 General transport equation in porous media 

The geological medium is considered to be a 

composite material which consists of fluid and solid phases. 

The phenomena of nuclide migration through a geological 

medium are complicated microscopically because the porous 

2 . 1 
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medium s not an ordered structure. We can formulate the 

transport equation governing the nuclide migration in a 

geological med um accord ng to a tatistical approach 

(Wl,S2) which smooths out the properties in complicated 

composite mater al by ave aging over a small volume domain 

in this medium. 

I.et us cons der a composite medium as shown in Figure 

2.1, in which arbit ary positions a e measured by the refer-

ence coord nate. The volume of an arbitrary domain D is 

designated by V. The domain is fixed in time and in space. 

The center of the domain occupies the point O', the position 

of wh ch is designed as X on the reference coordinate. The 

position of arb t a y point in the domain D is designed as 

the relativ position vector from the point 0 1
• 

We can select the domain D of a volume element which is 

smal enough compar d to the characte istic length of the com-

pos t med urn and larg nough compared to the microscopic 

feature of the composite medium, e.g,, the inter-particle 

al 
pore s ze. 

Cons ide a dynamical property, ~. which is generally 

described as 

(2.1) 

a In this system, there are two kinds of pores. One is a 
pore of the inter soil-solid particle and the other an 
intra-fine pore in the solid ase. The latter should be 
included in the solid phase. 



2 . 3 

0 

Fig. 2.1 - A schema volume domain com-

the solid base and fluid ase 
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The transport equation which governs the time-dependent 

and spatially dependent properties in the composite medium 

system can be obtained by the following three steps: 

1. Smooth the property in the domain with the aid 

of volume averaging: 

~ = ~1 !fOCx ,t)dx 
v 

(2.2) 

2. Assign the smoothed value to the property at the 

center of the domain. The property is thus re-

duced to 

( 2. 3) 

1 is to be considered as a point function with 

respect to the position, X, 

3. Derive the transport equation for the point function, 

The values of the dynamical property are different for solid 

and fluid phases, s and f, in the domain, 

1 

'1f; (X, X, t) 
' 

x t: x1 

'Y'(X,X,t) "" ( 2 '4) 

l ·rp5 ( X , 3C t ) , .X ( Xs 

2.4 
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where denotes the position in the phase ~. We can 

define a function as 

H ( x f x"' ) :::: { 

1 

0 

( 2 '5) 

From the above definition, the ~ values in each phase and 

in the entire domain can be defined as 

(2.6a) 

(2.6b) 

The volume average for (2.6) is defined as 

(2.7a) 

(2.7b) 

2 0 5 
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( 2. 8) 

volume fraction of phase a. ( 2. 9) 

The average, ~a' is an intrinsic value for the a phase, Va 

is the volume of a-phase in the domain and is generally a 

function of time. 

Next we will find the averaging rules for the time 

derivative and the position derivative with respect to X, 

which usually appear in the transport equation for a homo-

genous medium. Differentiating (2.7a) with respect to time 

under constant volume, V, we obtain 

/\ 

We can use the following equation 

) 

ot 
) ' dJCb 

dt 

(2,10) 

(2.11) 

2. 6 
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where xb denotes the position on the interface between 

the solid and fluid phases, ~a is the unit normal vector pointing 

out of the interface from the a-phase, and W is the velocity 

of the interface. o(x) is the Dirac delta function, The 

second term of (2.10) is rewritten with the aid of (2.11). 

where A is the interfacial area within the domain, 

Introducing (2,12) into (2,10), 

,t) 

Writing (2.13) for each phase and adding, we obtain 

+ :;}jf 11Mx~>, t) ~ <Pr c xb, tJ ]w ·rLs dxb 
A 

(2,12) 

(2,13) 

(2.14) 

(2.13) and (2.14) are the averaging rules for the time de-

rivative. 
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We can derive the averaging rule for the position 

derivative from a procedure similar to the above, The 

dynamical property ~ can be written as 

(2,15) 

because ~ is a point function with respect to the position 

vector. ~ is rewritten with use of the definition function 

( 2' 5) : 

ij{(>CJC_.t) ~ tCx+x>t)H[(X+x) f (X+X~] 
o/..:::=.Serr{ 

(2.16) 

The value of ~ integrated over the fixed domain is now dif~ 
a 

ferentiated with respect to the position vector X: 

j % H [(X+ ) f ( +X )ot] 
v 

[tHj( +X)e( 

)f'( 

2.8 

= fv~ [vo( Hh 
==j ( lh ) H i ( JC +X) 6 ( JC ) <>( } J d X + (<Po{ Vx H 1 ( +X) f (X+ X),J d X 

v Jv 
=j (V: 1fo )H 1 ( JC+X) f (X+X)ot J dX' -j ~ b'(X~; ~x)tZ.t dX v ;c o( v 

;:: ( ~ dx ~J~,(.JC!,_ t) tlo~, dx~, 
J\d ~ ~ (2,17) 
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Dividing both hand-sides by V, the volume average can 

be obtained as 

(2.18) 

For 'fl, 

(2.19) 

These two equations (Sl) relate the derivative of the averaged 

value to the average of the derivative of 'fl. Henceforth, 

'fl f , t ) i s s imp 1 y d e s i g n a t e d a s 'fl f (Jt b ) . 

As a first contribution to the transport equation, the 

material derivative of the dynamical property is given by 

)d 

dS ·t J lJr.(Xp)V" (Xb)·l1."' JX, 
A 

( 2. 20) 

where S is the exit or entrance surface area enclosing the 
a 

phase a in the domain. V a )is the velocity for a-phase at 

the interface. From (2,20) and (2.13), we can obtain the 

general transport equation, 
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~t fv lf ot H ( JC f JCo<) d X == ~ t Jv i H (X E 

+ JA tx Cx:h) [ ~(JC")- l 
birth rate of ~ in the 

a 

2.10 

(2.21) 

The left hand side of this equation is equal to the birth 

rate of ~ in a-phase of the domain. From the Gauss integral 

theorem, this equation can be rewritten as 

)Jx + J vx · ( lfo~U) d:c ~ j tcxh)W ·llotdJC b 
Vo~ ;4 

= birth rate of ~ in a-phase 
a 

For the whole value of ~ within the domain 

birth rate of ~ in the whole space 

(2.22) 

of the domain (2,23) 

For a mixture of m chemical species, consider m contin-

uous bodies, each of which is visualized by the region it oc-

cupies in the physical space, The bodies are allowed to oc-

cupy a common portion of the physical space. In this case, 

the material derivative of the dynamical property for the k-th 

chemical species is written by 



DRAFT 

~~t Jvt~O(Hcx f' )dx = ~t f thO( J.x. 
~ 

= ( :i2fk01 dJC +j~ ~V, ·!7wdS +J~ l/. (X6)·flwJX 
) 0 -t koi koi l?ot /?d b 

~ S A 
o{ 

2.11 

(2.24) 

where subscript k denotes the value for k-th species. Intro~ 

duction of (2,13) into (2.24) gives the transport equation for 

the k~·th species 

= birth rate of k~th species in a-phase - Rka (2.25) 

(2.22) and (2.25) can be rewritten with help of (2.18). 

~) + V 1 ~CJCo~J[e,tCXb) ~ W j ·'Itt ciX.b 
A 

= birth rate of ~ in the a~phase a 

"" birth rate in the a-phase 

In the above derivation we have used the relation: 

(2.26) 

(2.27) 

(2.28) 

. 
(2.27) can be rewritten by introducing the relative flux Jka of 

the property ~ of k-th species within the a-phase, which moves 

at a velocity (vk -v~) relative to the a-phase, 
' ('( u, 

) (2.29) 



2 .12 

DRAFT 

If the solid phase is stationary, Jka measured at the solid 

fluid interface is the net flux across the interface. Sub~ 

stituting (2.29) into (2.27) results in 

. ( ) 

11' @ + -~~ l J (,.,) + 1}!. ( v . 1<\o< "4>1 ko< 
A 

}} 

= + birth rate of ~ka in a-phase (2.30) 

(2.26) and (2.30) are the general transport equations for a 

single body and for multi-bodies of a mixture, respectively. 

These equations can also be obtained by integrating the 

single-phase transport equation over the volume domain and by 

using the averaging rules, (2.13) and (2.18). 

The Equation of continuity 

In case ~ is selected as the density of the 

a-phase, the birth rate of ~ becomes zero, because radioactive 

decay contributes negligibly to a mass change. Then, from 

(2.26), 

(2.31) 

This equation is the mass-conservation equation for the a-phase. 
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The last term denotes the rate of change of the a~phase 

to another phase. The sum of (2.31) with respect to both 

solid and fluid phases yields 

where 

+ 

and we have used the continuity equation at the interface: 

Next, we will derive the continuity equation of the k-th 

chemical species in the mixture. In this case, the general 

transport equation (2.30) for the mixture should be used. 

Selecting the molar concentration Ck as ~k , equation (2.30) 
a ··a 

can be written as 

) + ( 

) + ) 

(2.33) 

where 
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and Rka is the birth rate of the k-th species in the a-phase. 

The second term in (2.33) represents convective trans-

port, the third term represents diffusive transport, and the 

fourth term represents the net flow of the k-th species 

acres the solid fluid interface. Summing over k, (2.33) is 

reduced to (2.31), which is the continuity equation for total 

mass in the a- ase, 

We denote the deviations of C and from the r 
0 0 

averaged values in the domain as Cka and V'a 9 respectively. 

Then, 

c i?o( + (2.34) 

Each deviation is reduced to zero if averaged: 

( D J 0 
I d:J< 0 ) 
v::, V,c 

(2.35) 

Us ry 
b (2.34) d (2.35), 

( . ( . ( ) (2.36) 

Introduction of (2.36) into (2.33) yields 

) i· . ( ) +· . r ~0( + l J 
+ fj, -(- ) ( 

Ro/ 

1 r Rko~ v J 
(2.37) 

~ 
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0 

Here th mass flux a is 
,! ka the net molecular flux for the 

k-th chem cal species relative to the motion of the ~-phase. 

In this work, the gen 
,, 

a~L eon. itut ve relations governing 

0 

Jka w 11 not be treated, Instead, we assume Fick's law of 

diffusion: 

G 

J~« (2.38) 

With the help of (2,38), (2.37) is reduced to 

cH(f"' C\a~) + JE ~ ~ol k:oi ) + • ( Ep( ) 

. [D~~ ( c~~ )J -
. ( 

t V). D~<<>< 
fl. 

d J 
+ ~-1 [ .i,)JC.J + Jf ,J ~· dXh 

'""' 
Rko< 

(2,39) 

where the spatial change of in the averaging domain was 

neglected, The fifth term in the left hand side of (2,39) 

means a kind of the "tortuosity" effeet (S2,Gl) which yields 

the reduction of diffusion flow. 

We are primarily concerned here with the migration of 

radionuclides, which may exist in the ground water in various 
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chemic l forms, Let us consider a decay chain such that 

the i th nuclide specie w thin a given ase exists in m 

differ nt chemi al forms, each 

of nuclide i per molecule, 

k 
fo m k containing S. atoms 

~ 

The birth rate of the i-th nuclide takes the form 

)Y) 

'\ 
where f. 

l 

(2,!;,0) 

(X, t) is the source term of the i-th nuclide in 

2 016 

the a-phase at the position X and at time t, If we multiply 

(2 39) b k d 'd ~, y S. an _ aa 
l 

the resultant equation with respect to 

k, it follows that 

+ ' { "-~ ?Yl S.: k D ka~ 
R"'! 

·~ ~ r 1~ 
"'A R"-1 

-r v lr ~~~ +fl. tD/ J} c!JC. 
b 

(2,41) 

'V 
where N. is the atomic concentration of the i-th nuclide, 

1a 
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and ~. is the decay constant for i th nuclide. 
l 

This 

equation is the balance for i th nuclide and is a 

general transport equation governing the migration of 

nuclide through a geological medium, to be further 

developed in the following section. 

2.3 ~~~<verning Eguations for Radionuclide Migration 

In this section we simplify the transport equation 

(2.41), and we develop the governing equation for the 

nuclide migration process which will be the subject of 

analyses described in the later chapters, 

Because of the complexity of the geological media, 

we postulate that the radionuclides are transported by 

ground water moving in a deterministic flow path with a 

flow velocity given a In this case the transport 

equations for chemical species and radionuclides are given 

by (2.39) and (2.41). 

2' 3' 1 Simplifying assumptions 

We postulate the following assumptions: 

1. The fluctuation terms for the convective transport 

2.17 
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in the water phase, c 

as a stochastic random process. This assumption is 

formulated as 

where 

r--~ 

= ·~ Dar C t;y) y Ef 0 N~-'f 

r is the dispersion tensor. 
I 

(2.42) 

The convective term within the solid phase is as-

sumed to play no role in the transport of radionuclides. 

2. The molecular diffusion coefficients in the 

water phase are assumed to have a value Dmf for each 

chemical species. This assumption leads to 

v (2.43) 

This assumption is reasonable, because the molecular dif-

fusion coefficients of several chemical species are of the 

same order and because transport by molecular diffusion 

process is less important than transport by dispersive 

diffusion, as treated in assumption 1. 

The molecular diffusion in the solid phase is also 

assumed to be independent of chemical species, so that 

D 
k,s 

D 
s 

(2.44) 

2.18 
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3' The tortuosity term is neglected. Because 

this term usually reduces the flow due to the molecular 

diffusion, this assumption is conservative for nuclide 

migration. Scheidegger (Sl) has proposed a dispersion 

tensor in which both convective fluctuation and tortuosity 

terms are included. 

4, The motion of the interface is negligible, and 

the mass-averaged velocities of the two phases across the 

interface are assumed to be zero. 

( )=0 (2.45) 

This assumption is reasonable when there is no phase change 

between the water and the solid phases, 

5. The bLlk motion of the solid phase is neglected. 

w 
s 

0 (2.46) 

The transport equations for chemical species and 

for radionuclies are then given by 

2.19 
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a -~ 

· ( Er Gf i}r) ~(ffCkr) + at 

. [ ) ·n~ dx 
T 

~ Zf R~r 
(2.47a) 

-~ . [ )J (EsCks) -~ ( 

~ J .h ( ) . cix., -· ., 
A 

(2.47b) 

(tt f;/q) t . ( Ef Ni'f) 

. I . ( N~f) J + ~& i 5" . ) • t1f d 
"' A R 

~ 

( N ~ I 'V 21 >- .:-1 .:~1, f - IlL N,if J + E;fif 't) 

(2.48a) 

ot ( r~L:); ) I 

'1 Ds c ts r~L:s) J 

~-. v.[ ~~ s. . !'( ) . b 

()( t) 

(2.48b) 
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where 

and 1 is the unit tensor. 

2. 3. 2 Transport with local chemical-sorptive 

equilibria 

At this stage, we encounter a problem con~ 

cerned with the rate processes involving in the migration 

of radionuclides through geological media, e.g., sorption 

and chemical reaction processes. 

A geologic medium suitable for radioactive 

waste isolation must have a water velocity small enough to 

isolate the nuclide from biosphere. With such slow trans-

2. 21 

port, one might expect that local thermochemical equilibrium 

will ?xist within each phase and between water and solid 

phases. To examine the migration features under the limit-

ing conditions that chemical and sorption processes are 

locally equilibrated, we further assume that 

6. At each position X the sorption equilibrium is 

described as a linear relation: 

(2.49) 
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where kD k is a distribution coefficient for the k~th 
• 

chemical species. 

7. Different chemical forms of a given chemical 

element are in equilibrium within a given phase a, so 

that 

(2.50) 

where 'c is ta the concentration of the t-th chemical 

species involving the nuclide i and kt denotes an 
R,ka 

equilibrium constant. 

From (2.49) and (2.50), the overall sorption 

equilibrium is expressed in terms of nuclide concentra-
rv rv 

tions N and N 
if is 

(2,51) 

where KD . is the overall distribution coefficient for the 
• l 

i~th nuclide, i.e., 

'\; 

The concentrations N. are expressed in consistent units 
l 

(e.g., moles/liter), so that Kd. is dimensionless. 
1 

2. 2 2 
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Summing up (2,48) with respect to phase and 

using (2.51) the transport equation governing the i-th 

nuclide migration is given by the single equation: 

~t(Zfk~"N,:;)+Vx·[ ftfVf -J)f· Ef -4V;.,(K~i·£s)} MifJ 

• [ ( E t + D5 K:o. £ f s 1 ) • \1x t\1:1 ] 

+ Z:; f.:r 
(2.52) 

where 

l+ E KD ./sf s , 1 (2,53) 

2.3.3 One-Dimensional transport with local chemical-

sorptive equilibria 

For simplicity, we also assume: 

8. The deterministic water pathway is one~dimen~ 

sional and the nuclide flow out of the pathway due to trans-

verse diffusion can be neglected. The geologic medium is 

isotropic. 

(2.52) is simplified by this assumption to 
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""" 
+ Efftf + f:s f(s (2.54) 

where 

(2.55) 

and z is the distance in the direction of water flow. 

is the dispersion coefficient in fluid phase, and 

v is the velocity of the water phase in z-direction. If 
f 

diffusion within solid phase plays no role in the transport 

of the nuclide, then B. becomes unity. 
l 

When Ef' Kdi' Ki and vf are constant in space and 

time the above equation is reduced to 

(2,56) 

2.24 
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Equations (2.54) and (2.56) are the fundamental 

equat ons to be solved in the succeeding chapters of 

this report. 

2.3.4 0 e-dimensional transport without local 

chemical equilibrium 

For future studies it is helpful to formu-

late the governing equations of the nuclide migration in 

a more general form involving the effects of non-equili-

brium sorption and chem cal reaction processes. 

First, we consider the problem evaluating 

The mass trans-

fer bet\veen two ases arises from sorption processes and 

information concerning the sorption mechanism is necessary 

for a strict formulation of this flux across the interface. 

So ption occurs via three steps; diffusion within the water 

phase, diffusion through fine pores in the solid phase, and 

adsorption or ion-exchange. We can postulate some limiting 

cases, e.g., a process controlled by diffusion or a process 

controlled by the rate of the reactions, 

2 0 25 
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In the case of diffusion controlling, we 

Ca n formulate J• ( 
k 

) by the following equation: 

(2.57) 

where kM k is the overall mass~transfer coefficient for 
> 

the k-th species which includes the effects of the dif-

fusional resistances in both phases. This equation is 

not strictly correct but holds approximately if sorption 

process is in a near-equilibrium state. 

When mass transfer is controlled by reaction 

rates, the mass flux across the interface is obtained from 

an assumed first-order reaction rate with respect to the 

k-th species. 

(2.58) 

the reaction-rate constant. In the above 
'\, 

where kA,k is 
'\, 

equation, e . vs and emf are some characteristic concentrations. 

For an ion-exchange reaction process, 

'\, 

e the concentration of the ion-exchangeable 
vs 

species, except for the k-th species, in 

the solid phase 
'\, 

emf the concentration of the ion-exchangeable 

species, except for the k-th species, in the 

liquid phase (2.59) 
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For an adsorption process, we can select 

the vacancy site concentration in 

the solid phase 

(2.60) 

There may exist competing sorptive species in each phase, 

the concentrations of which may be greater than that of 

the radionuclide, It is, therefore, reasonable to assume 

that the ~vs and the ~mf are constant, independent of the 

concentration of k~th species, In this case, (2.58) is 

formally reduced to (2,57). 

The integral terms in (2,47) and (2.48) are 

rewritten for the mass~transfer rate of (2.57) as 

(2,61) 

(2,62) 

where a is the interfacial area per unit volume of the 

geologic medium. In general, the values of kM k and kD k 
• • 

are dependent upon the chemical form. It is possible that 

2.27 
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a given nuclide may exist in more than one chemical 

form, even within a given phase. In such cases (2.62) 

cannot be evaluated in terms of the concentration of 

nuclide i alone. The prediction of the radionuclide 

migration then requires the simultaneous solution of 

the transport equations for chemical species. If the 

radionuclide is in a single chemical form within a 

given phase, (2.62) can be simplified as 

~-k dx.h = k,·Li a ( Alif ~ k NLE) 
.D, i 

(2,63) 

In this case, the simultaneous transport equations for the 

nuclide (2.48) can be solved directly with help of (2.63 ) 

Next we consider the possibility that a 

radionuclide may exist in more than one chemical form 

within a phase. As explained previously, the sorbing 

process is strongly influenced by the chemical form of the 

nuclide. If a certain chemical species is difficult to 

sorb compared with the other chemical species, the chemical 

species which sorbs less easily moves more rapidly through 

the geological medium. Some experimental results suggest 

the importance of different chemical forms upon the migra~ 

tion Pu and Am nuclide (F3). This problem is in principle 
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evaluated by solving the simultaneous transport equa-

tiona for the different chemical forms of a nuclide 

with appropriate chemical-reaction rates and mass-

transfer rates as discussed previously. 

Another problem concerned with chemical 

reaction is the mineralization reaction, i.e,, the nu-

elide may react irreversibly with some component in the 

soil. The assumption of reversible sorption, i.e, • ig-

noring irreversible mineralization, may always be con-

servative, but the effect of mineralization upon trans-

port requires elucidation (BS). 

This mineralization process can also be con-

sidered as the problem concerned with different chemical 

forms of a radionuclide in the solid phase. We consider 

two chemical forms, one is desorbable and the other is im-

possible to desorb. In this case, the transport equations 

for the solid phase can be described from (2.47) 

(2.64) 
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where ~ls and ~Zs are the concentrations of the chemical 

forms of the desorbable nuclide, 1
1

, and of the nuclide 

impossible to desorb, i
2

. For the nuclide concentrations, 

the above equations can be rewritten as 

(2.65) 

where 

., rv 
t'-' .:1 

'V '\/ 'v' 

,SL. R;,~ ::::: .S, ('-/ N,_·_, s - /1,· NL·,s Jr?,. N,'tS 
"' 

$.2 
'\.... t-1 A/ 

...... 
,f(' - st' .A,·_, N(' .. , s -· //,· N,:;,s +·k. Nt':1S ' '"•S l :;, 

(2.66) 

The lat:n term of the above equation, k.N. , denotes the rate 
l l:tS 

of mineralization, where we have assumed that the rate can be 

expressed by a first order chemical reaction. the 

fraction of the (i 1)-th nuclide that is transformed by decay 

2. 30 
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to the desorbable chemical species of the i-th nuclide, 

In this case, (2.65) and (2.48a) are the fundamental 

equations to be solved, with the interfacial transfer 

rate gi.ven by: 

( ) (2.67) 

Solution of these non-equilibria forms of the transport 

equation will be a subject of future studies, 

Transport along interfaces 

The fundamental premise in develop-

ing the transport equations in this chapter has been that 

the geological medium is composed only of solid and liquid 

phases. Transport of radionuclide along the interface be-

tw en two phases has been neglected, although this might 

become important for st ongly sorbing species and with very 

low water velocities. The treatment of inter facial trans-

port is left for future studies. 
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NUCLIDE RELEASE MODES 

n 

The analyses herein provide for various possible 

modes by which radionuclides can be released at the re-

pository (H5), These release modes affect the boundary 

conditions at the repository, and they thereby affect the 

migration features of the radionuclides through the geologic 

media, In Sections 3.2 mathematical models are developed 

for the various release modes assumed for this study, In 

Section 3.3 the boundary condition and source term for 

transport equation are discussed, In Section 3.4 we present 

a general superposition relation for constructing the 11 band 

release" solutions. 

3.2 

3. 2' 1 Constant rate of dissolution of waste material 

Consider a radioactive waste consisting of radio-

nuclides dispersed through a solid matrix. It is assumed that: 

(a) a constant amount of the total waste material 

dissolves into ground water per unit time, 

(b) all of the waste material begins to dissolve at t=O. 

Dissolution is complete within a leach time T, and 
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(c) all radionuclides contained within the waste 

material go into solution when the waste matrix 

dissolves. 

Assumption (b) results in a "band release" of radionuclides 

into the ground water, 

For an initial amount M~ of total waste material, the 

rate of dissolution M of the total material is 
T 

(o:;:;;is:T) ( 3 '1) 

The rate of dissolution M,(t) of radionuclide i in the waste 
l 

material is then 

M. ( t) 
l ( 3 '2) 

where n.(t) is the amount of nuclide i per unit amount of 
l 

waste material. 

3,2 

If the radionuclides dissolve uniformly into water flow-

ing at a volumetric flow rate Q past the waste material, and 

neglecting the diffusional transport of the dissolved radio-

nuclides in the vicinity of the waste material, the concen-

tration N.(t) of a dissolved radionuclide at this locatJon 
1 

(z "" 0) is 

N, ( t) 
l 

M, ( t) 
"" l _" __ _ 

Q 
( "0~ { ~ T) (3. 3) 
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Or~ using (3.1) and (3.2): 

N" ( t) 
l 

(0 ~t~T) (3.4) 

The waste concentration n
1
(t) of a mother nuclide (~b= 0) 

in a decay chain is related to its initial waste concentra-

tion n° by 
1 

For the decay daughter 

~:\ t 

No 1 
le ( 3' 5) 

etc., which continues in the form of the Bateman equation for 

radioactive decay (Bl). Therefore, the time-dependent ~on-

centration N"(t) in the liquid at the point of dissolution 
l 

(z = 0) is also given by a Bateman equation. More formally, 

a t <a 

N· r-t) o< t < T ( 3' 7) 

0 t >T 

The above equation can be rewritten as 

( 3 '8) 

3. 3 
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where h(~) is the Heaviside step function 

) ~ < 0 

) ~ >O 

B.(t) can be obtained from the solution of the differtial 
~ 

equation 

with the initial condition 

B. ( 0) 
~ 

N. ( 0) 
~ 

(3.10) 

N,(O) is the concentration in the water phase at the time 
l 

zero when dissolution begins. The solution of Equation 

(3.10) is the Bateman equation 

where 

(3.12) 

the product term in the denominator of Equation (3.12) is 

defined as unity when m = j ~ i. 

The B. (t) values for i 
~ 

1, 2 and 3 are written aH 

3' 4 
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{f) - No ~A;t ,e (3.13) 

B .. (tJ N~ 
--ltd At/1., ( e-?J,-t_ e-;~.-1) - e + /L_-- /L (3.14) 

BJ tt) = !Joe_ ~.Ad:+ Nd.o /l"" ( e~?i .. ( eAd) 
J .~ 

.11 3 - /\"" 

When the band~release time T becomes very small and 

approaches zero, the release mode becomes an impulse re-

lease, such that 

N. (t) "" N~To (t) 
l l 

(3.16) 

where o(t) is the Dirac delta function, 

When the band-release time T approaches infinity, the 

release mode becomes a step release, such that 

N. ( t) 
l 

B.(t)fi_(t) 
l 

(3.17) 

On physical grounds, waste material may reasonably be ex-

pected to dissolve at an infinitesimal rate in the case of a 
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step release, resulting in only differential concentra~ 

tions of the dissolved radionuclides. However, it is use~ 

ful to construct step~release solutions which satisfy the 

boundary condition of finite concentration in Equation 

(3,17), If these finite concentrations are those deter~ 

mined from the band~release dissolution model of Equation 

(3.4) with finite T, then the resulting relatively simple 

step~release solutions can be used in the superposition 

equation (Eq. (3.60) developed in Section 3.4 to construct 

the more complicated band-release solutions. 

3.2.2 Nuclide-Dependent fractional rate of 

dissolution 

Here we assume that the waste material and its 

contained radionuclides begin to dissolve into the waier at 

t 0, and we assume that each radionuclide leaches from the 

waste at a fractional rate k., which is a constant for a given 
1. 

radionuclide. The amount M. (t) of radionuclide i within the 
l 

repository at time t is given by 

dM. 
l 

dt 
~k.M. 

1. l 

with the initial condition 

(3,18) 
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M. ( 0) 
~ 

M~ 
~ 

(3,19) 

The solution of (3.18) and (3.19) is obtained as 

(3.20) 

where 

(3.21) 

Assuming, as in Section 3,2.1, that the radionuclides dis~ 

solve uniformly into water flowing at a volumetric rate Q 

past the waste material, and neglecting the diffusional 

transport of the dissolved radionuclides in the vicinity 

of the waste material, the concentration N.(t) in the water 
~ 

phase at z ~ 0 is given by 

(3,22) 

or 

t > {! 

where 

(3.23) 

3 . 7 
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N° is the concentration of nuclide m in the water phase 
m 

at z • 0, t = 0. For three members 

(3.24) 

Equations (3.22), (3.23), (3.24), (3.25) and (3,26) 

describe the 11 preferen al release" mode. 

3. 8 

If all species dissolve at the same fractional rate, then 

all have the same fractional rate constant k (k. = k), and 
1. 

Equation (3.22) becomes 

where 

(3.28) 

The release mode of Equations (3.27) and (3.28) is called the 

"exponential release mode", 
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The release modes of Section 3.2 have been illus-

trated for the case of no diffusional transport of the 

released radionuclide at the point of release, so that a 

concentration boundary condition at the source can be 

specified. as in Equations (3.4) and (3,28). In the next 

section we apply these release modes in the development 

of a generalized source term at the point of dissolution. 

The concentrations N.(t) obtained in Section 3.2 are 
~ 

the real concentrations N.(O,t) at the boundary only if 
l 

transport by diffusion can be neglected at z = 0, 

these concentrations N.(t) can also yield a nuclide source 
l 

term to be used directly in radionuclide transport equation, 

a useful approach if diffusional transport at the source is 

to be considered and/or if the transport equation is to be 

solved for spatially distributed sources, 

The physical picture for the source condit~on is illus-

trated in Figure 3.1, in which the dispersion coefficient D. 
l 

is assumed to be zero in the up-stream zone and non-zero in 

the down-stream zone. 

3.9 
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water flow 
with velocity, v 

Figure 3.1 Boundary condition at the 

repository (z=O), diffusional 

transport in flow direction only. 

In this case, the nuclide balance at the repository for 

one-dimensional transport, with flow at velocity V in the 

Z direction, yields 

-~De { _d~·~l, IJ J 
z,o7 .. 

(3.29) 

If the effect of dispersion at z 0 is neglected, Equation 

(3.29) reduces to the simple equation. 

N. ( t) 
l 

(3.30) 

3.10 

This concentration boundary condition has been used in other 

published analyses of radionuclide migration, 
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A more fundamental approach, necessary when diffusional 

transport both upstream and downstream of the repository is 

to be considered, is to use the dissolution rate as a source 

term in the transport equation, The rate of dissolution M?(O,t) 
1 

is given from the previous solutions by 

M~(t) 
l 

N.(t)Q 
l 

(3.31) 

The equivalent distributed volumetric source term f. (z,t) to 
1 

be used in the transport equation is then 

(l:,t) N.(t).S. o(z) 
l s 

(3.32) 

where S is the effective cross-sectional area for water flow 

associated with the dissolving waste, or 

f.(z,t) 
l 

N. (t)V' ~-(z) 
1 

(3.33) 

where v is the water velocity at the point of dissolution, as 

illustrated in Figure 3.2. 
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of nuclides 

D.:\=0 
l 

D.~ 0 
l 

water flow with 
velocity, v 

Repository Site 

Figure 3.2 Dissolution as a volumetric 

source term. 

3.4 Genera1 SuQerposition Equation for Band 

In this section, we develop the general super~ 

position relation for the band release of decaying 

radionuclides through sorbing media. As shown before, 

there are two standpoints for connecting the nuclide~ 

release phenomena with the nuclide migration. One is 

to treat the release as a boundary condition at the 

repository, and the transport equation without source 

term is solved using this bounday condition. The other 

is to treat the release as a source term in the transport 

equation. 

With the first version, the transport equation (2.54) 

is reduced to 
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1~1.2,-----··,0<Z<oo, i>o 

L . (' 1.; == 2(E Tl, JM·j _ .L(cvA· .t. '~ ~(r:v., 1·)- l/.l .o 1 < 3 34 ) 
l lYe - Jl .Vt ()Z '02 C dV,i Jt CI\JV, f\.(flcCf\1( , 

where N.(z,t) is the nuclide concentration in water, v 
J. 

is the water velocity, D. the effective diffusion co
l 

efficient and K. is the overall sorption coefficient. 
l 

A. is defined in (2.55). 
l 

For simplicity, the subscript 

f has not been included in (3.34). The governing equation 

3.13 

for "mother", i.e., the first member of the decay chain, is 

obtained by formally setting A =0, 
0 

The properties E, D., 
1. 

v, A., B. and K. are considered generally to be functions 
l l l 

of z. 

The initial condition is 

(3.35) 

We further prescribe 

i
1 

= /, 2, ----- ' 0 <: l <: OQ ' t < 0 ( 3 • 3 6) 

In the following we will be concerned with two special fcrms 

of the solution to the above equations. These are due to a 

step release of the radionuclides at the boundary z=O where 

they obey the conditions 
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for i=l,2,3, ... n. With the help of (3.37) we wish to 

b 
construct the solution for the band release N.(z,t) 

1 

which satisfies the boundary conditions 

Where T is the leach time for the band release. We will 

show that the desired solution is given by 

b s f ~s N- { i I t ) = 1\1. ( z I ) - N· ( jf, I:-T) 
l l ' 

I (.I: /, 21 • - • -· .. • (3.39) 

o<Z<OG, i>o 

where N~(z,t) is the solution for the step release, 
1 

Equation (3.37) and ~~(z,t) is the step release solution 
1 

satisfying the coundary condition: 

3.14 

The system of equation (3.34) is linear in the N. functions 
1 

and simultaneously subject to non-trivial boundary conditions 

of the form of (3.37) for all of the nuclides. It is conven-

ient to construct a solution through a set of subsidiary 

equations in which only one boundary condition arises, one 
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at a time. s Thus, we consider for example N.(z,t) in 
l 

O<z<oo, where i is any number of the chain i=l,2 .... , 

n with A =0. 
0 

The contribution N~(l) due to the finite 
l 

initial amount of the first member of the chain is given 

by 

(3.4la) 

(3.4lb) 

A Is (1) 

I \li ( o, i) = 

The contribution N~( 2 ) due to the finite amount of the second 
l 

member of the chain is given by 

I 
(3.42a) 

A tSO) f ) 
/\.j2. ()!I- < 0 = Q (3.42b) 

A /S(J.) 
/Vi (o,l) 

and so forth. In each subsequent subsystem, the starting 

index is increased by unity to represent the member which is 

to be a mother for the remainder of the chain. On account of 

the linearity it follow at once that 
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N;,.5 
( i, i ) = l N/ rp ( l, f ) 

j=l 

(3.43) 

and that N~(z,t) satisfies Equations (3.34), (3,35), (3.43) 
1 

3.16 

(3.36) and (3.37). In exactly the same way one can construct 

the solution for the function N~s(z,t~T) by rewriting (3.41), 
1 

(3.44) and (3,43) in terms of the argument (t-T) after re~ 

* placing B.(t) by B.(t). The combination of these two solu-
1 l 

tions giving N?(z,t), as postdated in (3.39), satisfies the 
l 

partial differential equation (3.34), It also satisfies the 

s *s initial conditions because N.(z,t) and N. (z,t~T) vanish for 
1 1 

t<O and t<T. The boundary conditions force a constraint be-

* tween the function B.(t) and B.(t), which is described as 
1. 1. 

~~ 

B.(t) = B.(t+T) 
1 1 

(3.44) 

The second version of the nuclide release mode as men~ 

tioned previously asserts that the transport equation (3.34) 

is rewritten as 

::::: ~ :L r z, i ) , L::. 1. 2, - - -·. (3,45) 

where we postulate that nuclides are released into the water 

phase only. 
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At the boundary ~ of the defined domain D, the fol~ 

lowing homogeneous condition is satisfied 

\AI e introduce a fun c t ion G . ( z , t ; s,t ) which sat is f i e s 
:L 

(3.46) 

(3.47) 

(3.48) 

If we can find the solution for G.(z,t;~,T), then N· (z,t) 
:L 1 

is given by 

N;il.-f!~' !! Cn(Z.I; ~.'t)[j;l~,-r!d$J'( 
]]) 

(3.49) 

The above relation can be easily shown as follows: 

Multiplying both sides of (3.47) by g.(~,T) and integrating 
l 

the resultant equation over the domain D, one can obtain 

JJ f];J~.c-JLi[0r,·rz,t; ~.--n]d~dy 
7JJ ( ~ 
= ~ )j fh ( ~ j () J ( l- ~ ) . 6 ( t- l) J ~ d 7 (3. 50) 

J1) 

- - {h(Z,{) 

The left hand side of (3.50) can be rewritten as 

3.17 
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f f 2t ( ~I l ) L L [ G l ( l A ; ~ ' ( ) J d 9 d 7 
1) 

= J J ll [ ~- L' ( l I t ; ~ ' 1: ) 3l ( ~ 1 L )J d ~ cl 'T 
~!D 

- L ~ [ f J Gri ( z I t ; ~ ' 7) 3 ,· ( ~. '[) d F d '( J 
JD 

(3.51) 

Combining (3,50) and (3.51) with (3,45) we can find that 

(3.49) is the solution for (3.45) and (3.46). Equation 

(3.49) satisfies (3,4S) because G.(z,t;~,T) satisfies 
:1 

(3.48). Equation (3.49) can be rewritten as 

1\(·(;;,tJ= fj GJ;zJ;~/c) c(~J~· (~,'<: )d~dr 
']]) 

(3,52) 

+jJ CTL r2, t; ~~ 1: J ~-~ ('tf.JE ( ~) ;J.~-~ t-kd?~?) J ¥ drc 
1D 

Equation (3.54) is a recursive solution. By iterative pro~ 

cedure, we can find that N.(z,t) is given by the linear 
l 

combination with respect to f. ,f. 
1
,.,. ,f

1
. Then, the 

l l~ 

solution of the band release in which f? is expressed by the 
l 

combination of two step release modes, 

f t'b ( l, l ) = f.5 
( i! I f ) h (f) ~ f. s ( i! , t ) h ( t ~ T ) (3.53) 

is given by the linear combination of the solutions for 

these step releases: 

(3,54) 

3.18 
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'l< s 
N.' (z~t) is the solution for the step release, 

l 

(3.55) 

Equation (3.54) agrees with (3.39) which has been obtained 

on account of the concentration boundary condition. When 

~ s ( ' ) . t. z,t: lS 
1. . 

expressed by 

the ~- term can be described with the help of (3.55) as 
l 

follows: 

(3.57) 

Q is the volumetric flow rate of water and S is the effective 

Lross sectional area of the water phase, Combining (3.57) 

with (3.55) we obtain 

(3.58) 

To illustrate how this condition is met, let us assume 

that the B.(t) are given by Bateman equations with known 
l 

coefficients B .. , which has been shown in 3.2. In this case, 
lJ 

(3.44) can be expressed as 

3. 19 
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Then, if we described the solution of the step release, 

s 
N.(o,t) ""B.(t)h(t) 

l l 

or 

f:(z,t) = ~.(t)o (Z)o(t) 
l =l 

s 
as N.(z,t:B .. ). the solution for the band release can be 

l lJ 

expressed by 

(3. 60) 

By use of the superposition equation, the relatively simple 

solution for step releases can be used to construct the 

exact but more complicated solution for band release. 

Lester, et al (11) have proposed the superposition re~ 

lation for band release 

3.20 



DRAFT 

Equation (3,61) is incorrect, because it does not take 

into account the difference between Bateman coefficients, 

* B,, and B,., It is, in fact, applicable only to chemical 
~ J 1. J 

chromatographic bands wherein radioactive decay does not 

cccur. 

* 
As seen how Equation (3,59), only when ~,=0 are 

1. 

the B .. and B .. equal. 
lJ ~J 

3.21 
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4. RECURSIVE AND GENERAL SOLUTIONS OF THE TRANSPORT 

EQUATION FOR NUCLIDE MIGRATION 

4 0 1 

We have obtained the fundamental transport equation 

(2.54) which governs the migration of the nuclide through 

geological media. When we neglect a term of f. in (2.54), 
:18 

the governing equation can be expressed as 

( kt E NJ lL ~~ o~cf.'D N'G)- ()} ( CDl ~~'") 

E ( K\,-1'/lt-t Nl-1- k~AJ'J~) i- E. ft ( Z, t) ! ~o= 0 
( 4 0 1) 

K. is the overall sorption coefficient, s is the porosity, 
l 

v, the water velocity, D.' 
:1 

the diffusion coefficient and 

A. is given by (2.55). These values are functions of z and 
l 

time in general. 

When K.A.,E,v and D. are independent of the distance z 
l l l 

and time t the above equation can be simplified as 

( 4 0 2) 

4.1 
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In this chapter, we shall be concerned with solving 

the fundamental equation (4.2) with arbitrary release 

modes. Section 4.2 discusses the solution of the transport 

equation with a nuclide source, Section 4.3 treats the 

recursive solution for the transport equation without a 

source term, in which the release phenomena are treated 

as a boundary condition at z = 0, Section 4.4 is concerned 

with the case of no-dispersion. Recursive solutions of 

different forms and the general solution will be proposed 

for an i- member decay chain and arbitrary release modes, 

Section 4.5 discusses the condition for local secular 

equilibrium in a decay chain in which very rapidly decaying 

nuclides are included. 

4.2 Solution of the Transport Equation with a Nuclide 

4. 2. l Recursive solution of transport equation 

(4.2) can be rewritten as: 
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The defined domain in which (4.3) holds is 

]) 

and the concentrations N.(z,t) at the boundary of the 
l 

domain, t, are zero 

(4.4b) 

The solution of (4.3) and (4.4) can be obtained with the 

help of the Green function as shown in Section 3,4. 

Ndi: I t) = f s G- ~ ( iL t : ~ :r) h ( ~ J '( ) d ~ cf<: 

lD 

G.(z t·£; T) should satisfy l • , .• 

( 4. 5) 

(4.6b) 

The solution for G.(z,t;~,T) can be obtained with the aid 
l 

of Fourier integral. Delta function is expressed by Fourier 

integral 

W (N 

~c;z-~)= 2~ f et_\"((lf-~2tt<) Sct-?)=2~j eew(t-Z"Jw 
-~ -~ 

( 4. 7) 
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Then, the right hand side of (4,6a) can be written as 

-~( ~)6(i~l')= 
41

(L c~~~l<Ci'-~\lkJ~lw(T-C)dcr 
~\)<) _OQ 

We prescribe the solution for G. as 
1. 

(4,8) 

&~.· ( 1., t: ~,'T) = 4rr:z JJ\X)e(k (:?- ~)-i.w(t--r)s (k,~D)clk.dwc4, 9) 
-llo -VO 

Introducing (4.9) into (4.6a), S(k,w) takes fhe form; 

Then, 

where 

S (h,w) =--------~-
1w ~ ( 'Zt f:/ + Ai. ) ~ iV~ k. 

00 

Jrh) = J -~~-~~-~--- dw 
Lw~ 

-00 

(4,10) 

(4.11) 

(4,12) 

4. 4 

Now, we consider the integral, I(k), The function in the 

integral is analytical except for 

(4 .13) 
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Then, we can obtain I(k) in the range, t-T<O; 

[rk) = Jlrn 
00 

because 

lim Re( (t-T)) ~ 0 wh~n t <0 ~· r "" ~· ;: > see J:'l.g. 

I 
4, 1, the closed curve Cp. 

When t -T>O, we can integrate along the closed curve, 

In this case, 

0 

c ' p 

Then, the integral is given by 10~1= -21\c [Res.t.v= ~i.(Ai.+1Y);-·v,f<, 

\ 
\ 

C' 
0 

iO 

= -2 ·\\ .QJ( p [- ( t-1:: )( ~v~-1~~l. )- tvlk (i.-c-)) 

Ct-'C'')o) 

(4. 1 s) 

In case of (t 

R 

i . 
G -·-·~ - S 1 n g l e p o l e 

I 
/ K Cp 

/ 

//"-...In case of (t~T)>o 

Figure 4.1 

Domain of Complex Variable 
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From (4.14) and (4.15) 1 the integral can be given by 

0 , f- Z'<O 

(4.16) 
7: >o 

Introducing (4.16) into (4.11), the G.(z,t;~ 1 T) is ex
l 

pressed as: 

0\) 

.l~ J Sl"X'f (a~(z-~-th(1-'l'))- (Ai_+Y/:-~")(1:- T )JdR 

Gr;J .z, -t : 1: J -= -OO r - -r > o c 4 • 1 n 

0 

For the integration of (4.17) we can use the formula: 

' 0.. > 0 (4.18) 

Then, the G, (z,t;t;,T) function is explicitly obtained by 
1 

(4.19) 

0 
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The solution for (4.3) and (4,4) is obtained by 

introducing (4.19) into (4.5). 

This is the general solution for arbitrary release modes. 

When f. (Z,t) is expressed as: 
l 

N. 
1
(z,t) is zero in the range, t < 0. 

l~ 

Then, N.(z,t) is given as 
l 

(4.21) 

Furthermore, we postulate that the nuclide is released out 

at z 0. In this case, f.(z,t) is expressed by 
. 1. 

(4.23) 

Therefore, the nuclide concentration is reduced to a sim~ 

plified form: 

4 • 7 
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The physical meaning of (4.24) is clear . The first 

term of the right hand side of (4.24) means the contribution 

Of the l.th nucl1'de wh1'ch 1's 1 d f th · _ re ease out rom e repos1tory. 

Th - of the 1.th l'd 1 d f h 't e amounc nuc 1 e re ease rom t e reposl ory at 

time t - T during the time interval, dT, are given by f. (t~T)dT. 
l 

Th b b . 1. d . h h . th 1. d 1 d t . e pro a 1 1ty ens1ty t.at t e 1 nuc 1 ere ease a t1me 

t - T locates on the position, z, after time T elapsed, is 

given by 

(4,25) 

During T, the amount of the ith nuclide decreases due to decay. 

The amount of the nuclide which has been released at the time 

t- T becomes f.(t- T), exp (-~.T)dT after the time interval, 
l l 

T • Thus, the contribution of the ith nuclide released from 

the repository is given by the first term on the right hand 

side of (4.24). 
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The second term of the right hand side of (4.24) 

. f h . th 1 . d d f t ar1ses rom t e 1 nuc .l e generate rom tae 

nuclide, which has been distributed through the whole region 

of the water path due to the dispersion. The amount of the 

th 
i nuclide generated from the (i-1)-th nuclide during the 

time interval, dT, at the position, t, and at the time 

(t-T), is given by: 

(4.26) 

The probability that the ith nuclide generated in the range 

of distance, ~ ~ ~ + d~, locates on the position, z, during 

the time interv2l, T, is given by 

I 
~---

(4.27) 

··IET7Y 

Thus the contribution of the ith nuclide generated from the 

(i-1)-th nuclide for a time interval dT and a distance d~ is 

given by the product of (4.26) and (4,27), 

When the dispersion coefficient becomes zero, the 

general solution (4.22) yields the solution without disper-

sian, with the aid of the relation: 
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(4,28) 

The resultant solution is expressed by 

(4.29) 

In case of the release given by (4 23). (4.24) is re-

duced to 

(4,30) 

0 

4,2.2 Concentration of the ith nuclide in a decay 

chain 

We can obtain the concentration of the ith 

nuclide from the recursive formula, (4.26). From (4.3b) 

the following relations can be derived from setting D. ~ D 
1 

(4.31) 

4.10 
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Introducing (4.31) into (4.24), one can obtain 

where 

For the mother nuclide, i = 1, ~ = 0. 
0 

t 
1-. I I - r J: -fl,@t; 
1\1 i ( ~ . -d - j l , ( -t -- e ) e 1 ( u, e) ~ -~ e ; d e 

0 

With tha help of (4.32), N2 (z,t) can be obtained 

N r t ~:A, th. r ( \ f'\ 
2_ ( 2'' t) = I f. (1,- e,;) e I '\)'l 8z I :t~IJ,t\-,_J d IJ;z 

Jo 
-t :t--e, 

-t '\i'- J Je.l.J de11,(t-e,~e<)eA.e,-/\&tb. 
0 c 

x J: ~ F ( v,o,, ~ --v,e,) F( \J,o., z -~-u,e.l 
~(b 

The integral term with respect to ~ is reduced to 

J'x\:~co,~-C\l t=C6)z~~-b)d~ = F(C\+b> 2~(a+b)J 
-00 

4.11 

(4.33) 

(4,34) 

as: 

(4.35) 

(4.36) 
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(4.38) 

4.3 Recursive Solution of the Transport Equation with a 

Concentration Boundary Condition 

Consider the canonical system 

(4.39) 

which is to be solved for N. = N.(z,t) in the domain o<z<oo, 
l l 

o<t<oo subject to the 

4.12 



DRAFT 

Initial conditions: N.(z,o) = 0, Z > 0 
1. 

Boundary conditions al 

4.13 

(4.40) 

(4.41) 

N.(z,t) and its derivatives must tend to zero with a suitable 
l . 

exponential order as z * oo 

The boundary condition includes a contribution due to dif-

fusion effects and if this term is not desired one can form-

ally set D* equal to zero in the final solution with certain 

additional changes which we indicate later. The boundary data 

¢.(t) are arbitrary prescribed integrable functions. 
l 

It is convenient to introduce the following parameters: 

(4.42) 

With the first of these one rewrites the general equation 

(4.39) as 

We assume that N. 1 (z,t) is known and show how to compute 
l~ 

N.(z.t). 
1. 

First one simplifies (4.43) by removing the 

al See section 3.3 
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convection and radio-active decay term on the left hand 

side. For this let: 

where U.(z,t) is as yet an unknown function, 
:1 

(4.44) 

Substitution 

4.14 

of this into (4.43) results in the following partial differ-

ential equation for U., 
:1 

where 

(4,45a) 

(4.45b) 

The initial and boundary conditions, (4.40) and (4.41) ~ trans~ 

form into 

(4.46) 

and 

(4.47a) 

where 

(4.47b) 
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We exclude in the following the cases when 0 = 0 and 

'If· "' 0. In view of 
l 

(4.44), U, and its derivatives must 
1 

tend to zero faster 
~ '( z 

than e as z + oo The governing 

equations of the problem have thus been reduced to (4.45) 

~ (4.47). We solve this problem in two different forms. 

A~ 

One defines a modified Fourier transform and its inverse 

with help of 

and 

Uc(p,ll,~ ('TC[>,>~lllccz,tldi 
C> 

to 

LJ < ;,t 1 ~ J 'T c P, " ) u , cr.+ ) d r 
0 

This transfer~ kernel has the form (Cl) 

Tcp, t. 1 = 
) 

and satisfies the Sturm-Liouville problem 

0 0<2<c:O 

dz 
0 o.t 0 

(4,48) 

(4.49) 

(4.50) 

(4.5lb) 

4.15 
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If one applies the integral transform (4,48) to equation 

(4.45) there results 

d~ Ut Cp. t k "\ti~'UtU,+l · \Cp, ll dz ., s,., Cp, +.1 

0 

where 

s, .. , cp,tl •·• f"'s, ... c~.b.Tcr. <l d~ 
0 

(4.52a) 

(4.52b) 

By integration by parts one obtains with help of equations 

(4.48) and 

(4.53) 

The bracketed term vanishes at the upper limit in view of 

the fact that U. and its derivatives must vanish faster 
1. 

than e ~ r z as z + co At the lower limit z = o, there 

results with help of (4.47) and (4,51), 

]_-~ -TCp. ol o[ 2 N~9-.. (f)- U((o,{~ + U( t o,-t) fTC f· o) 

z~o (4.54) 

If one combines (4,53) and (4,54) and substitutes the result 

into (4,52) one obtains the inhomogenous Bateman equations 

4.16 
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dt 
(4.55a) 

where 

The source term R. 
1 

.(z,t) consists of the transform of the 
l~ 9 l 

precursor solution and the boundary condition of the ith nu-

elide. Equation (4.55) is solved subject to the transformed 

initial conditions (4.46) i.e. UtCp,o)=O, 

(4.56) 

This can finally be inverted with help of (4.49) and yields 

the formal solution for U.(z,t), or in terms of (4.44), 
l 

The source term r. 1 . has the form 
1.~ ,1. 



with 
S (z,t) - 0 

0 
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One can separate the solution into the two basic contri-

but ions which stem from the boundary condition of the 

nuclide and its radioactive decay of the precursors 

.th 
1. 

0 

(4.59) 

Consider now the special case that the diffusive component 

4.18 

at the boundary vanishes (i.e., D* = 0) in (4.41). Then one 

can use a standard Fourier sine transform and the kernel in 

equation (4.50) is replaced by 

T(p,z; D* = 0) JI Sin(pz) (4.60) 

With some additional minor changes the final solution reads 

(4.61) 



B- The Greens Fun 

Let us replace 

(4.45) Le. 
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n Method 

in the solution U, (z,t) of the equation 
1 

? 70. t > 0 
(4.62) 

4.19 

the variables z and t by ~ and 1: respectively. Let G(z,~,'T) 

be the Green's function of the homogeneous equation (4.59) 

which for boundary conditions of type III, i.e., (4.47) has 

the form (Cl) 

(4.63) 

Now replace in G the argument (by t-T Then G satisfies 

the equation 

>O (4.64) 

and the homogeneous boundary condition 

J ~=0 (4.65) 
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Consider now 

using (4.62) and (4.64). If one integrates this with re~ 

spect to ~ from 0 to w and then with respect to '( from 

0 to t~e where O<G<t one obtains 

(4,67) 

If the first integral on the right hand side is integrated 

by parts this yields 

On the right hand side the first term vanishes on account 

of the initial condition, (4,46) and so does the third 

integral. The second integral vanishes at the upper limit 

) = w for the reasons started after (4.47) for the behavior 



DRAFT 

of U," At the lower limit 
l 

on account of (4,47) and (4"65)" Hence 

(4 • 6 9) 

t-e 

J"'cT u, ~. o \ LU?. t.e l d~ = 2-n,N~ ]' c:,.c:;, D. +·T l 3,cc) d'l 
D 0 

(4. 7 0) 

We now pass to the limit e~o and recall the delta function 

character of the Green's function G (z,~,8) when e~o, The 

integral on the left hand side sifts out the value of U. 
l 

at x,t so that the solution to our problem is given by 

t 

u,o.+) ~" 2l'l,t-.1: J c;.o,o.t.c:l3;('tldt 
0 

t rX) 
+ j d1J c~ u. '}. t. ,, l S~.-,( ~. c > d 1 

0 0 (4.71) 

where G is defined by (4"63), 
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In the case that the diffusion term in the boundary 

condition (4.41) or its equivalent (4.47) is absent 

and G must then satisfy a boundary condition of type I 

i.e. in place of equation (4,65) we have 

G "" O, ~ = 0. 

The proper form of G is then 

_ ~~lr·} e 41_~-r 
) 

0< ? < O<l ) 0 < IT<()() I z ~ ~ I '?: > 0 

and (4.71) takes on the form 

t 
l) ' ( t -t- ) =-=- () kjo l d tr C2Z' Cl, ±_::~)_ q, ('C) d f[ 
", l~l"'- 0~ v~ 

0 

,t ()() 

+ J d'< J G-<z, 'V ,t-·T) S,., ( ?:n d'C 
0 0 

4.4 Recursive 

ation without 

(4.72) 

(4.73) 

(4,74) 

Recursive solution of transport equation 

without dispersion and some properties of 

the solution. 

Consider the canonical system 

4' 2 2 
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K~ ".j N, -r r0 )~\, ~-r A_, k, ~It = o 

L( "ctN~ -1- '\) .ltJ.:: + /LK~~t = /\,!<, N1 
I 1 2Jt d t 

(4. 75) 

which is to be solved for N. = N. (z,t) in the domain 
l l 

o< z <00 
' 0 < t <oo subje::t to the side conditions that 

l > 0 
(4. 76b) 

The boundary data ~.(t) are arbitrary integrable functions 
l 

which describe the release of the members of the chain from 

the repository. 

4.23 

The general form of the recursive equation system (4.75) 

(4.77) 

where 
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We assume that N. 
1
(z,t) is known and show how to compute 

1.~ 

N.(z,t). We construct the solution in two different forms, 
1. 

each of which exhibits certain advantages in demonstrating 

certain physical properties of the solution. 

A. Integral Transform Method 

Consider the Laplace transform of N. (z,t) with respect 
1. 

to z and define 

00 

n, .. , c P, + l ~0 f e·"~--..~c., c '. + l d2 

0 

(4. 7 8) 

The application of the transform operator to the equation 

(4,77) and use of equation (4.76a) yields 

This ordinary differential equation is solved subject to 

the initial condition n. (p,o) which results from the appli~ 
l 

cation of equation (4.76b). The solution is 

(4.80) 

4.24 
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To invert n.(p,t) we make use of the nshift" rule and 
l 

apply it to the first term on the right hand side. 

The second term in (4.80) is seen to be a Laplace trans~ 

form if as stated above ~.(t) =o fort< o, Then: 
l 

(D 'A· 

1'-J~ ~ e~r> e: '1: z rp, ( t- v; ) dl 

0 

This shows that the second contribution in (4,80) has the 

inverse 

4.25 
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Thus the complete inverse of (4.80) is 

(4.81) 

Now the precursor concentration Ni~l(z,t) = 0 fort< 0, 

z < o. Hence, the upper limit in the integral can be 

changed to Min(t,z/v") so that the final result reads 
.l 

(4.82) 

The equation yields the concentration of the ith me~ber 

of the chain in terms of the (i-l)th member and can hence be 

used in a recursive manner. Starting with the mother con-

centration N
1
(z,t) solved from the first of the equations 

(4.75) one computes from (4.82), N2 (z,t) etc. 

The physical interpretation nf the solution is simple . 

The first term on the right hand side represents those . th 
l 

nuclides that have been convected from the boundary (z = 0) 

and have escaped decay (the exponential attenuation term) 

4. 26 

while propagating along the characteristic t-Z/v. 
l 

constant. 
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"'h d h 0 t h 1 0 d h 0 0 L e secon term represents t ose 1 nuc 1 es w 1ch are 

contributed from the (i-l)th nuclides lying along the 

characteristic z - v.T = constant with their exponential 
l 

attenuation. 

We observe from (4.77) that the equation N
1 
(z,t) has 

the simple solution 

~ .. : 
N , c :ll , t ) = N ~ e~ ~ J; <:A C -t - ~~ ) 

(4.83) 

This can be verified by direct substitution into (4.76) and 

4. 2 7 

(4 77) h . . h" f h .th l"d . . T 1s 1n turn suggests t at we try or t e 1 nuc 1 e 

concentration the generalization 

(4.84) 

The functions N. (t-z/v ) are at this point unknown and are 
1, r r 

to be found. For i = 1, (4.84) reduces to 

(4.85) 

which identifies 

(4.86) 
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To find the functions N. (t~z/v ) lets substitute the 
1, r r 

dN. 
proposed solution form (4.84) into (4,74) with N 1 = i, r ·-

(4.87) 

1 r 

For r i, the terms on the left hand side of (4.87) vanish 

so with t~z/v = T there results on equating the coefficients 
r 

of the exponential terms, 

(4.88) 

The initial condition (4.76b) is satisfied in view of (4.84) 

if one chooses 

T~O (4,89) 

The boundary condition (4.76a) is satisfied if 

(4.90) 
}"=/ 

4. 2 8 
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when 

t 7 0 0 

We now solve the equation system (4.88) ~ (4,90) recursively. 

Let 

(4,91) 

then (4.88) can be written as 

which has the solution subject to the initial condition (4.89), 

7 

~~~:r"tf !J~., 1'' e. N~~l,,.(rc 1 l e drt' 

c (4.93) 

The remaining member N .. (T) is then calculated from (4.84) and 
l,l 

(4.90) as 

~-I 

l"'l~.zct\ - N~ ¢~ct)- 2~ N~.vCt) (4.94) 
r-1 

(4.93) and (4.94) determine the N. functions recursively 
l,l" 

from those of N. 1 and with this the solution for N.(z,t) is 
1~, ,r 1 
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completed. The variables ~ and t in these equations are 

dummy variables. In order to keep the conditions in equa~ 

tion (4.89) clearly in mind, one must multiply the N. 
1,r 

functions by unit step functions. The finial solution then 

takes on the form 

(4.95) 

The physical interpretation of the solution is identical 

4.30 

to that discussed in Section A . The first term (sum) represents 

. h .th l"d h" h 'b d f 11 l'd t ose 1 nuc 1 es w 1c are contr1 ute rom a nuc 1 es 

r = 1,2, ... , (i~l) with their exponential attenuation while 

the last term represents those ith nuclides that have been 

convected from the boundary and have escaped decay. 

An important additional feature of the solution (4.95) is 

that it allows one to find the range in the t and z variables 

in which the solution is non~trivial. For this consider the 

first term on the right hand side of (4.95). The term in the 

bracket vanishes when both step functions vanish. This will 

occur for a time value smaller than the smallest of the values, 

1, 2, .. , f, ..•. i). Suppose this smallest value 



DRAFT 

occurs for the migration velocity vf' then Z/vf will 

represent the first arrival time of the nuclides at 

position z. If furthermore, vf>v., the second term on . l 

the right hand side of (4.95) is also zero. Consequently, 

we have 

(4.96) 

This can be represented graphically at a fixed z position 

as shown by Figure 4.2. 

N.(z,t) 
l 

z = eonstant 

Nuclide-free 
time span 

t 

t z/v~ (first arrival time) 
I 

Figure 4.2 A scheme of the concentration 
against time at fixed position 

On the other hand, at a fixed time the above result can 

be written as 

(4.97) 

4. 31 

Physically z<vft defines the region that has been contaminated 
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at time t and z = vft represents the leading edge of the 

contaminant wave. 

N.(z,t) 
1. 

This is illustrated by Fig. 4.3. 

t constant 

Nuclide-free region 

z = vft (leading wave front edge) 

Figure 4.3 A scheme of the concentration 
profile against distance at 
fixed time 

Furthermore. the rate at which N.(z,t) rises (from zero) at 
l 

the first arrival time at z constant or at the leading 

wave front edge at t ~ constant is controlled by the term 

The numerical calculation for three member chain shown 

in the later chapter verify all of the above conclusion. 

In the case of an impulse release at z = 0 one can. in 

addition, also determine the cut-off in the arrival time (at 

fixed z) and the trailing wave front edge (at constant t) 

of the contaminant wave quite easily, The solution for the 

mother concentration is in view of (4.85) and (4,86). 

4 0 3 2 
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) 

With N
1 1 

given by (4.86), (4.91) yields 
9 

so that 

)1 + 
v,_ l 

In a comparable way, one can write down at once the express-

ion for N
3
(z,t). Since the bracketed term divided by (K

2
-K

1
) 

is always positive, the contribution to N
2 

from the mother 

will be non-trivial f0r 

(4.101) 

Outside this range N2 (z,t) ~ 0. The edges of the wave fronts 

are immediately determined from v 1 ~v 2 , 
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Finally we note that the wave front slopes are also 

completely determined in terms of the exponential attenua-

tion factors. 

4.4.2 The general solution of the transport equations 

without dispersion 

Consider the canonical system 

(4.102) 

which is to be solved for N. ~ N. (z,t) in the domain O<z<oo, 
l l 

o<t< 00 subject to the side conditions that 

(4.103a) 

/Yj( o) ""' o , r>o (4.103b) 

The boundary data ~.(t) are arbitrary integrable functions 
l 

which describe the release of the members of the chain from 

4.34 
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the Yepository. 

The general form of the equation system (4.102) is 

(4.104) 

where 
v 

v. K 
l . 

l 

The aim is to obtain the general (i.e, non recursive) 

solution for N. (z,t), For this purpose, consider the fol
l 

lowing i-sets of boundary conditions. 

Nw 
, (o,t)=- 0 

(2) 
~· (O. U= 0 

N/~J 
. I ( 0. 0 

/i) 
, /V. (o . 

• 

(4.105) 

The solutions to (4.103b) and (4.104) subject to the condi-

tions on a line j of the above set of boundary conditions i 

denoted by N9, (j)(z,t), Z ""1,2, ... ,L 
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On account of the linearity of (4,104) the sum of the 

solutions for all these individual boundary value problems 

for each value of (j) will be the solution to the complete 

problem described by (4,103a,b) and (4,104), i.e,, 

N ( "' f) = N;~)(z. t) + 
jl L: ' "- ' 

(j) 
N.e_ ( z,f) (4.106) 

}"'7 

The reader should note that some of the N
1 

(j) functions 

(2) 

vanish. 

For instance, if say N
1

( 2 )(o,t) = 0 but not N
2 

(o,t). which 

is the case for the second set of boundary data (j = 2) in 

(4,105) , then N
1

(
2
)(z,t) = 0 for all z,t>O. Analogously 

if N
1

( 3 )(o,t) and N
2
(3)(o,t) are both zero then N

1
( 3 )(z,t):: 

(3) 
N

2 
(z,t) :: 0 for z,t>O. In general there will be no pre-

(') (") 
cursor for the functions N

1 
J (z,t) thus N 1~ 1 (z,t) = 0 for 1< j. 

For each set j 1,2, .. ,,i of (4.105) the equation to be solved 

for - l'd N (j) ' each nuc. l · e 1 J.s 

where 1 1,2, ... ,i and N (j) 
1-1 

I(H .I (j) 
-- -- ). .f -I I'.J.f-· I 

i<.e 

0 when 1 < j. 

(4.107a) 

(4.107b) 

The boundary conditions (4.105) can be expressed in a more com-

pact form as 
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0 
<j) 

N~ (o.t) ~ (4.107c) 

while the initial condition is 

N
(}) ( 

b. 0):::; 0 (4.107d) 

The functions N:j)(z,t) are obtained by a repeated Laplace 

transform with respect to t and z of (4.107 a,b), 

Let 

(4.108) 

0() 

ci) J c~pz (j)( ) J? 
Y( € ( f, S) "" . C nR S 01 -<e (4.109) 

0 

There results from (4,107 a,b,c,d) 

(4.110a) 

. 1 (. J (4.110b) 
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where 

s +/I; 

Equation (4.107c) implies that 

0 

N;_ 
0, 1JcJ 

N}, l:e:j 

A "'o 
J 0 

(4.110c) 

(4.110d) 

We solve (4 .llOa) in a recursive manner from 9, =1 to 9, = i 

for each value of j; j runs from j = 1 to j = i since we are 

. d . 1 . th 1' d f . h . 1ntereste 1n t1e l nuc 1 e o a g1ven c a1n. 

Starting with j 1 and letting 9, run through the values 

1, 2, •• , , i one takes from (4,110b) n (l) (p,s) = 0 from 
0 

N o 
i 

= o. 

yields in succession 

n i ' J ( r_.. s J == __ tj_,!_}_Ji~ 
p + !Ut 

T' 0)" h ") --
L ~)'· \ ,-J .-:1 

0, N.0¢dsJ 
~ ---· 

( ft ,JA-1 )( /N JIA:z.) 

\·;, ).)z · · · Y.l-1 N/¢1 (S) 
'-·-~----~-------~~~·--··· 

( fr f<t ){ p+ flz) · " ( ?+ H-1) 

Therefore, (4, llOa) 

(4.111) 

4.38 
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Next one takes j = 2 and again lets 1 run through the 

values 1,2, ---, i. From (4.110) and (4.110d) one has 

N o -
4 

pective1y. Hence (4.110a) yields 

0 
N, "' 0 res

l 

(4.112) 

Continuing in this manner one shows that in general 

(4.113) 
' n ( 'P + flm) 

m:::j 

where 
i-1 

A U) = TT J) , whde 
t )'~j 1" 

(4.114) 

4. 39 
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By partial fraction expansion one can rewrite (4.113) 

as 

provided that the U are all unequal. Here 
m 

(4.115) 

(4.116) 

On inversion of (4.114) and (4.115) with respect to z one 

obtains 

Alo _p.z 
s)"" t\1· e · .-1-.. ( s J 

t 't'; (4.117) 

(4.118) 

Since 

(4.119) 

where 

/ 

4.40 
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(4.118) becomes with help of (4.112), (4.116) and 

(4.119) 

fr Gm Tf ( S+ Llrm) 
r~J r=J 
r>~om rtm 

(4.120) 

We transform the right hand side prior to inversion with 

respect to t. Let 

7r nM ~ B~) 
'"J 
ry:.m 

where by partial fraction expansion 

D l.i) 

rm 

(i-1) 
where D =1. 

r, m 

(4.121) 

(4,122) 

4.41 
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With these (4.120) reads: 

( ') -(~m)S 
Dt~ cf:: (s) e 

·~~~-~ 

S +Arm ( 4 • 1 2 3 ) 

By the shift rule 

(4.124) 

so that by the convolution rule 

') 

, D,_~ (!JoJt) ~ ~ (+)) 

The inverse of (4.117) is 

r~J 

yo/:IYI 

(4.125) 

(4.126) 

In view of the restriction placed on r/>. (t) in (4.103). The 
l 

substitution of (4.125) and (4.126) into (4,106) yields the 

4.42 
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general (non~recursive) solution 

) 

',' A;;, N/ ,~ ~~'~·(-~~( :·~~:~~~~"'~" : D, ~ J (~ ,~u J C<l1 !!! ) 
(4.127) 

l4om 

Again the first term represents those ith nuclides that 

have been convected from the boundary (z = o) and have 

escaped decay, The triple sum represents those ith nuclides 

contributed from all precursors. 

rium 

There are some decay chains in which very rapidly 

decaying nuclides are involved, For example, one of the 

most important dEcay chains is 

(4,128) 

For long term prediction of nuclide migration, almost all 

24ln d 241A d d 237N ~u an .m are re uce to p, Thus in this decay 

'"'37 225 chain nuclide L Pa and Ra are much smaller than those 

of the others. For this chain, we know that the secular 

equilibrium state in the decay process can be attained 
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without migration. In this section, we will verify that 

the secular state is also attained in the migration pro 

cess under some conditions. 

The solution of migration equation in recursive form 

is given by (4.32), 

(4.32) 

where 

Let us consider the case that the decay constant for 

the .th l'd l nuc l e is much larger than that for the (i-1)-th 

nuclide: 

(4.129) 

The time interval, t, of our interest is of the order 

1/ "A. 1 . 
l-

Then, the following equation is satisfied, 

(4.130) 
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The exp(-~.8.) value in (4.32) is nearly zero in the 
l l 

range except for the shorter time 0<8.<0(1/~.). because 
l l ; 

4.45 

of the high value of ~-. 
l 

This is illustrated in Figure 4.4. 

The function, F(V.G~Z- v.G:i) I in (4.32) is approximated by 
l ]) 1 . 

a delta function, 6(z-~). This approximation is valid under 

-- -· . -~- 2 
the conditions, AB >> BC and 4~v.OA <<Z , where point A is 

l 

a location having an order (1/~.) at ~ ~ 0 and the point B 
l 

is a point, (z, OA 

z ~- v. 8. "" 
l l 

~ at e. 
l 

means that F (v.G ,z 
l , 

C is a point on the straight line, 

OA. The effect of the above conditions 

v.G.) can be approximated by a delta 
1. l 

function at the point C. Since OA is of the order 1/~., AB 
l 

z and BC ~ v.OA, the above two conditions are rewritten as 
l 

(Lf,l31) 

Under the conditions, (4.131), the second term in (4.32) is 

given by 

(4.132) 

0 
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In the above derivation, we used the relation that 

Ni~l(z,t) is almost constant in the range of the order, 

1/~~ The first term in the right hand side of (4.32) can 

be reduced to 

(4.133) 

because F(v.G. Z~v.G.) is approximated as o(z). Then the 
l l, l l 

first term can be neglected in the range, z >0. 

From (4.132) and (4.133), we can obtain 

= (4.134) 

or 

(4.134) shows that the local secular equilibrium is at

tained between the ith and the (i-1)-th nuclides. The 

necessary conditions are summarized as: 

(4.135) 
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Introduction of (4.134) into (4,136) yields 

1 r )rOo -~~.,~.,e _ " J + ... __ , ___ ,_.__,.__;;, ___ ,, de d~ Nt"'
1 
(~, t~--e) e { ( v; .•. 1 e>(- $~ V~-,q () 

D :.to 

(4.137) shows that then member decay chain (, .,i-1, i, 

i+l, .. , , n) is reduced to the (n~l) member decay chain 

(,,, i 1, i+l, ,, n). 

Figure 4.4 Illustrative functional 
behavior for local secular 
equilibrium. 

4,47 
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5. APPLICATION OF THE GENERAL SOLUTION 

5. "l tion 

In the preceding chapters, we have discussed the dif

ferent release modes and the relationship among them and also 

have obtained the general solutions of the transport equation 

for arbitrary release modes. 

In this chapter, the solutions for various release 

modes will be shown with the help of the general solution. 

Section 5.2 is concerned with the dispersion free case. In 

this section, the solutions governing the migration of an i -

member decay chain will be shown for several release modes. 

In sections 5.3 and 5.4, the solutions for a three member 

decay chain with dispersion are shown for the step and the 

band release modes. Sections 5.5 and 5.6 will discuss the 

numerical results based on these solutions. The migration 

features of some important decay chains will be discussed in 

detail. 

5.2 Application of the General Solution of the Transport 

Iguation Without Dispersion -- Solutions for Several 

Release Modes --

In the preceding chapter, the general solution of the 
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transport equation without dispersion was shown in an 

explicit form: 

where 

l 0 l<' -~A vW1 
3\"M(t) -

l ... ,6\"WI (-\_ -- %,_ J 
t > v ~ Vw-

In this section, we prceose the solutions for several re-

lease modes with the help of (5.1) and the relationship 

among these modes which has been discussed in section 3.2. 

Solution for preferential release mode 

The preferential release mode has been de-

fined in section 3.2 and is given by: 

I -;\'t .. e ) hd:·\ 
'j I 

J ( ht' o) I t' Z; k:, Nm ~;[~yo 
l 

~ (.A~- JLJ) 
tcl,j 

(3.22) 

(3.23) 

The concentration of the i-th member can be obtained by in-

traducing (3.22) into (5.1) 

5 • 2 
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)( 

(50 2) 

For three members, the above solution is as follows: 

( 5 '3) 
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\
~l 

:n 

( 5 '5) 

where 

B' = JxJ -~~N~ ~~ + ,~~~ .. t:J~ 
u b, (/\,~1\-d(l\s~A,J \';<.2 /\3~·/\2. 

~' ,\AzN~ J3.i ';,)"' ~ .... ~ . ...::c~= 
!(,, (Ani\3 )(}\,_ •.. J\)) ~.2 

+ N~ 

( 5 • 6) 

2 
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5.2.2 Solution for exponential release mode 

The solution for the exponential release 

mode is expressed by setting k. =kin (3,22), 
l 

(5 '7) 

Then, the concentration of the i-th nuclide can be obtained 

• I 
by setting k. = k in (5,2) and replac1ng B .. by 

l 1J 

For three members, we have 

B .. : 
l.J 

( 5 '8) 

5 '6 
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( 5. 9) 

N; c 2-. t) = e-Az.o/'\J~ h ( t -~ ~v:,) l B"'\ ec k+J\,1(-t~ %~) B:n~E?{'":A& > (+~ %J) 

(5.10) 

5 . 7 
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+ fl, A'- h ct _ ?N.) e-A1 o/v3 [ D;~ B~. { -An ( 1:- }&l) - (/-.,+~J C1-%:~)t 
\}; v~ 1 r.~ r;1 A.-r~-.6r~ e - e j 

+ ])~~B.. { e~.:\3 (+-%~ icA,+R)Ci- %1;}] 
J\, +R- .6.)3 

(5,11) 
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Where )B 

B33 = + _ _t\,_N1 -+ Ntl 
( >-,-- ) 'A.,_~ )\3 3 

5.2.3 Solution for step release mode 

The solution for step release mode is 

easily obtained from the solution of exponential re-

lease mode by setti~g k = 0, 

NJtl ~~ )_~~ Bj· CA;t h U l 
(5,12) 

j-1 

From (5.8) the concentration for the i-th nuclide is given 

by: 

For three members, we have: 

(5.14) 
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(5.15) 
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(5.16) 
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5.2.4 Solution for band release mode 

The band release mode is defined by 

(5.17) 

The solution for this release mode can be obtained from the 

solution of step release mode by using the superposition re-

lation given by (3.60). 

(3.60) 

The first term in the right hand side is given by (5,13). The 

second term can be obtained by replacing B .. in (5 .13) by B. ,f.. 
1] 1] 

exp ( A.T) and also replacing t by (t - T), The resultant 
J 

solution is expressed as: 

(5.18) 
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For three members. the solutions can be obtained with 

the help of (5,14) ~ (5,16), 

5.2.5 Solution for impulse release mode 

The impulse release mode is a limiting case 

which can be obtained by applying the condition, 

P. (P(f-K)~/;(f-T--:z)J=J(f-K) on the solution of band release . , m T , h v.. v. v.. 
T-7'0 '-. L ' ' 

mode. Then 9 the concentration of the i~th nuclide is ex~ 

pressed as: 

(5.19) 

For three members, we have: 

(5,20) 

(5.21) 
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5.3 tion of General 

n for Three Membe Chain with 

Plane Source and Dispersion-- (Hl) 

The general solution for the transport equation with 

plane source and dispersion is given by (4.38). 

(4,38) 
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Applying this equation to three members~ the concentrations 

are given by: 

t 

N,rz/t):::: J f,o-e~Je-)1 $'Fcv,e,, Z-!J;e,)de, 
'0 

(5,23) 

(5.24) 

(5.25) 

where f.(t) is the source term at the repository and can be 
l 

5.15 

related with the concentration at the repository with the use 

of (3.33) and (4.23). 

(5,26) 
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In this section we apply (5,23) - (5,25) to the three 

member chain and propose explicit solutions for step and 

band releases modes, 

The decaying step release mode asserts that N.(t) 
l 

is expressed by the Bateman equation, 

for three members can be obtained as: 

In this case~ f, (t) 
1 

/113/t) ""1,3 ~ ( Ns0+JJ; A]: + -~~~)~~?:____ __ ;);;;,:d 
l /\z-ls (.A 1-.A3X-A z ~;3 

+ ( N; ~-~- --+ - N,oAI~ 2 -~) e-Az t 
.ArAz (). 1-h )()j -)..:>) 

+ J 

(5,27) 

5.16 
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The concentrations for the three members can be 

obtained by introducing (5.27) into (5.23) ~ (5.25) and 

then by using integration by parts and the following relation: 

(5 .28) 

The resultant expressions for the concentrations are: 

"+· J!;~--- [ E ( 1 ~ 1 j 2) - E (I, 7 j T ) 

IJ; ( 1\,~- ~JJz) 
-if(!, 2;!) -£(1~2/2) J 

(5,29) 

(5.30) 
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'\ 

N, (Lf) = 8 33 E(3/3; 3) + Bnf ( 2, 2; 3) +8.37 E(t/ 1 :.3) 

+ 

+ ~~_?:_.-~ ~-~~2~~~-) ~ ~f- B 11 X I) 2_ E ( 2, 3 )' 2) 112 
lJI Vi (/\j[ -~1 r 13l.)(A /2- ~II :z) l}l 1j~-?X;~~)~7;z)(/:~li,~-~i;2/f;} 

B
11

_A 1,h i7:z E(T, 2; 2) 

lJ1 1J'2 ( 1\ 12-). I T::z)( r;z /! /2- /,~/lp) 

811 >11 .A 2 E ( 1, 1 / t J 
+ ~-----·-----· --·-· 

v;v2 (A; 1 -A,[~~)(/Iz;·-~tH/) lf; lJL ()\51 ~A I !J1) ( i/;>f r; I-!121 /:;) 

-1- Bn A1)2G; ( 7,;:; 1) 
I ---------------·----·-··· --

Vi lh (1121-)\IJ;,)(/l 7/;~- ;1,/f;,) 

(5.31) 
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where 

l(. / 
J 

(5.32) 

(5.33) 

In compact form, the above equations can be described as: 

I ) 

2 

2 

(5,34) 
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Let us consider the solutions for band release 

mode. The superposition relation is described by (3.60) 

as 

(5.35) 

The first term in the right hand side is given by (5.34), 

The second term is obtained by replacing B .. in (5.34) by 
lJ 

B .. exp ( A.T) and also replacing t by (t~T). Then, the 
J~ .J J 

concentrations for the band release can be obtained from 

(5.34) and (5.35). 

When K-+0, (5.34) agrees with the solutions without 

dispersion. Then, it can be said that (5.34) includes the 

case of no dispersion, 

5.4 Application of General Solution -- Solution of 

Transport Equation (F2)_for 3 member chain 

~ispersion and the concentration qundary condition 

The governing equation of migration which we will 

treat in this section is 

~7 . a · 
t 2J z2 

The initial and the boundary conditions are 

( 4 '2) 



DRAFT 

The recursive solution of (4.2) and (5.36) is given in the 

preceding chapter by (4.61) 9 which can be rewritten as 

(5.37) 

where 

Ri-d 'P, e) :::: K \JL· ;SI._Jp, t') +- iJi lC p C(JS { pl) exp I Ot· + -f:;) e} 
I( N/ cj;L. ( ()) 

"' - 11(02' S. (v{):::.c· 
/' t·-1 !' -

0 7j" 

z 
- ~,.t -- ~IC- fl i) A~·-1 dz , / z) 2 ( -:7 s.nr CZJ, e ' "'-> ~--

\_ f I -1 
~.__,.rr 

4tc 

(5.38) 

5.21 
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This section is concerned with the concentrations of 

three members for the step and the band release modes. 

For step release, the boundary condition at the 

repository is expressed as 

(5.39) 

Then, the concentrations of the three members can be cal~ 

culated from (5.37) - (5.39) by the iterative procedure 

with the help of Fourier Integral Table. The resultant 

concentrations are reduced to the analytical solution (5.34) 

for the step release in the preceding section, but with the 

function E(i,j:k) defined as 

L ( £, i : k) ::c: e 

v --v,.. t!r ~ .-.~- I j '- " - · J l.J r 

( ;(,. '-> 0 . 7 . ' I i·J'" v 1.; yr 'VI(: t ) i . 

(5.40) 

The band release solution can be obtained by the 

same procedure as in the preceding section. 
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When the diffusion or dispersion are neglected 

in the water path, the functions E(k,j;k) i.e., (5.40) 

and (5.33) agree with each other. Thus, the solutions 

for concentration boundary condition agree with the ones 

for the transport equation with source term. 

5.5 ~ 34 u~ 230 rh~ 226 Ra Decay Chain Migration Behavior (H4) 

One of the important nuclide chains to be considered 

in the predictive modeling of hydrogeological transport of 

radionuclides in high-level wastes is: 

242m 242 238 234 230 226 
Am ~ Cm ~ Pu ~ U ~ Th ~ Ra 

The most important species is usually 
226

Ra, because of its 

relatively high biological hazard and its relatively high 

mobility in geologic media. The important time scales for 

226 
the appearance of Ra are of the order of tens of thousands 

of years, as controlled by the long life of its precursor 

Therefore, because of the relatively short lives of 

the first three members of the above chain, the analysis of 

226 Ra transport can be reduced to the analysis of the last 

three members of the above chain, with the assumption that 

the first three members have already decayed to form the 

1 1 . d 234 ong- 1ve U. 
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In this section, the migration feature for this 

three member decay chain will be elucidated with the help 

of the solutions of transport equations (5.29) through 

(5.31) which correspond to the step and band release 

modes. The computer code is shown in the Appendix. 

5. 50 l Input data and parameters 

5. 5. L l Release Mode 

In Chapter 3, several release modes have 

been discussed. In this calculation, we select the band 

release mode as a typical release mode. The band release 

mode requires the unknown initial concentrations for three 

members, 
3 (atoms/em of H

2
o), The amount of 

the i~th nuclide M. (t') (atoms) in the repository changes 
:L 

with time according to the Bateman's equation. 

Where t 1 is the time measured from the moment of initial 

emplacement of the nucludes in the repository, and we as-

sumed that there is no daughter in the repository at t'=O. 

The change of the amount of each nuclide is calculated as 

5.24 
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shown in Figure 5.1. The amounts of 
230

Th and 
226

Ra 

increase with time first, and pass a maximum at 

f = 2xl0
5 

year. Finally, the ratios of the amounts of 

the second and the third members relative to that of the 

first member approach to a steady~state (transient equili~ 

brium): 

= 

(5.42) 

In order to simplify the calculation, we can assume two 

kinds of initial conditions, i.e., 1) The release of nuclides 

from the repository to the groundwater phase occurs at an 

early stage, 2) The release occurs after the nuclides have 

attained the state of transient equilibrium. In the first 

case 
234 u · h 1 l'd · h · pure lS t e on y nuc l e present 1n t e reposltory, 

and no daughters are present at the beginning of the release, 

i.e. , (5.43a) 

In the second case the initial concentrations, N~ and N~ 

are assumed from (5.42) as 
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10 1 o-
2 Ra ~ 

M 3/M7 
(\j 

Th u 

' M /M 0 c 
r0 2 1 0 

o~ 

102 "-., 

Time, yr 

e 5.1 - Nuclide concentrations against time in the 
~..<L:.--c__~~ 

repository (z=O) for the 
234

u+
230

Th+
226

Ra decay chain. 
234 th 0 

(Pure U source at t=O. M. =atoms of i nuclide. M1 234 l 
atoms at U at z=O, t=O.) 
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Data of Parameters 

Nuclear data and sorption equilibrium 

constants for the nuclides are shown in Table 5.1. 

Half-life (yr) 

Decay Constant A. (1/yr) 
l 

Sorption Equilibrium 

Constant, K. 
l 

(-) 

Table 5.1 

230Th 

4 7.7xl0 

226Ra 

3 
1.6x10 

2.84 xl0~ 6 9.00 xl0~ 6 4,33 xl0- 4 

The values of the parameters, K., v and D 
l 

have essentially defined the nature of the sorption medium 

through which the nuclides migrate, The K. values used in 
l 

this calculation are taken from the most comprehensive set 

of data available, which are obtained from the values eval-

uated by Burkholder (B3). The velocity of groundwater is 

assumed to be 100 m/yr. This is of the same order as the 

measured value for cracked rock and deep aquifers(HS). With 

this assumption for the velocity of the groundwater, the 

migration speed of each nuclide (v. ~ v/K.) is: 
l l 

50 2 7 
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U· , vl LO X 10~ 2 
m/yr. 

Th; v2 2.0 X 10~ 3 
m/yr. 

Ra; v') 
J '"' 2.0 X 10-l m/yr. 

In this decay chain, 234 
the migration speed of U is 

h h f 230 d 226 faster t_an tat o Th, an that of Ra is much 

faster than its precursors. Half~lives decrease in the 

order of 
234 u, d 226R an a. 

In this section, the successive developments of 

the nuclide profiles are graphically shown for the case 

of 
4 

leach time (T) = 3 x 10 yr 

This leach time is much longer than the half-life of 
226

Ra 

5.28 

(1600 yr) but much shorter than the time for the occurrence 

of maximum M 3 /M~ in Figure 5.1. 

During the period of leach time, each nuclide mi-

grates by the distance of 

234U· , v
1

T 300 m 

230Th; v
2

T 60 m 

226Ra· v
3

T "' 6000 m 
' 

Each nuclide migrates in its half-life the distance 

shown in Table 5.2. 
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Table 5,2 

Migration length in each half~life 
(half-life) x (migration velocity) 

154 m 

320 m 

226 
In spite of the fast migration speed of Ra. 

the survival distance is not too long because of its 

shorter half~life. On the other hand, 
234 u can migrate 

along a relatively long distance without significant de-

cay. From the above Table 5.2, we may expect that large 

radioactive effect of this decay chain will extend over a 

few kilometers (when V = 100 m/yr) because of the long 

survival distance of the first (parent) nuclide, 
234u, 
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The value of the dispersion coefficient is de-

pending greatly on the water velocity, porosity of the 

soil column and the pore radius. The characteristic dis-

persive length, D/V, may range from several to several tenth 

order (HS). In this calculation, an average value of 10 3 

m
2
/yr is selected as the dispersion coefficient. The value 

corresponding to the usual molecular diffusion coefficient, 

1 x 10 1 m
2
/yr, is also used for comparison. 

It should be noted that the relative situation of 

the development of distributions changes in a variety of 

ways depending on leach time. In the series of graphs pre-

sented in this section for T = 3 X 10
4 

yr, however, most of 

the important features are expected to be seen, 

5 . 5 ' 2 Concentration Profiles of 234
u+

230
Th+

226
Ra 

5. 5' 2' 1 Comparison of the solution of trans
port equation for the case of plane 
source and dispersion and the case 
of concentration boundary condition 
and dispersion. 

Figure 5.2 shows the plotting of the concentra

tion profile of each nuclide at t=5xl0
4 

yr in the case of 

234 pure U source in the repository at t 0 for two differ-

ent solutions of the transport equations, i.e.,(l) the solution 

of transport equation with plane source and dispersion (plane 
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source solution) (5,33) and (5.34); (2) the solution of 

transport equation with concentration boundary condition 

and dispersion (concentration boundary solution) (5.34) 

and (5.40). In this figure, the broken lines show the 

solution for the plane source with D = 1x10 3 m
2
/yr, the 

dash-dotted lines show the solution for the concentration 

3 2 boundary also with D ~ lxlO m /yr, and the solid lines 

-1 
show the solution both for the plane source with D = lxlO 

2 ; h b d o- 1 2 ; m yr and for t e concentration oun ary D = lxl m yr. 

In the case of small dispersion coefficient, 

-1 
D = lxlO , both solutions for the plane source and the 

concentration boundary agree with each other. Furthermore, 

it was found by the preliminary calculation (H2,H3) that 

the calculated concentration profiles almost agreed with 

those of the dispersion free case. However, in the case 

that the dispersion coefficient is larger, D 3 lxlO , the 

concentration profiles near the repository are much more 

affected by the difference in boundary conditions of the 

transport equation, As shown by the curves in broken lines 

and dash-dotted lines, the concentrations of each nuclide 

for the concentration boundary are much lower than those for 

the plane source. The solution for the plane source takes 

into account the effect of dispersion in the negative z 

5.31 



Solutions 
concentration 

cond. 
D=1x103 m2/yr 

-1 2 
D=1x10 m /yr 

I I 

cond. / 
I 

plane source I 
Iff 

I 

4 
t = 5 x 10 yr 

, 
' k 

Fi ure 5.2 Comparison of concentration profiles for different 
. . 234 230 226 source boundary cond1t1ons for the U+ Th+ Ra decay chain 

4 234 3 
at t~Sx10 yr (Pure U source at t=O, N.(z,t)=atom/cm , 

0 3 }_ 4 4 
N.~atom/cm of U at z=0 9 t~O. v=lOOm/yr, T~3xl0 yr. ,KTJ=lxlO , 

l . 4 2 L 

KTh=5xlO . KRa=SxlO ), 

5.32 
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domain, but the solution for the concentration boundary 

condition does not take this effect into account, Also, 

the solution for the concentration boundary condition at 

the repository is governed by the Bateman's equation for 

t<T. So, for a time t = 5xl0
4 

yr > T, the concentration 

of each nuclide has to satisfy the boundary condition so 

that the curve of its concentration profile has to start 

from zero at the repository. Thus, the evaluation of the 

5,33 

distribution of each nuclide near the repository using the 

solution for the concentration boundary is less conservative 

due to this artificial concentration boundary condition, 

On the other hand, the solutions for the two different 

boundary conditions at locations far from the repository al-

most ag~ee with each other. 

Thus, it should be noticed that the solution for the 

transport equation with the plane source represents a more 

realistic model of the transport phenomenon than the solution 

with the concentration boundary condition which has been 

usually used by many other researchers. 
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5.5.2.2 Concentration profiles of 
nuclides in the case of pure 
234U1 • • source 1n repos1tory at t~O. 

Figures 5.3 through 5,6 show the success-

ive development of concentration profiles of each nuclide for 

the case that the leaching begins at t ~ 0 without any daughter 

nuclides in the repository. N.(z,t), i=l,2,3 is the concen-
1. 

. f h ,th l'd . h 1 trat1on o t e 1. nuc 1. e 1n water p ase at a ocation z and 

a time t. 

N~ is the concentration of 
234 u at z = 0 

just after beginning of leaching (N~ = N~ = 0). 

be inversely proportional to the leach time, T. 

N° should 
1 

The concen-

trations of Ni are all relative toN~, shown by the ratio 

N./N°J. 
l -

In these figures, the solid lines show the concentra-

tion profiles of nuclides for the dispersion coefficient 

D ~ lxlO-l m2 /yr, and the broken lines are for D = lxl0 3 

/yr. 

time, T 
4 

3x10 yr. 

In Figure 5.3, t is less than the leach 

230 Th which is first leached out from 

the repository is at the location of v
2
t. Let us first con

sider the case that the dispersion coefficient is small. 

All 230 Th in the region v
2

t < z < v
1

t has been produced by 

h d Of 
230u outs~de the 't t 11 t t e ecay ~ repos1 ory excep a sma amoun 
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from the contribution of small dispersion. In the re~ 

< z < h ' f. 230 h d v
1
t, t e concentrat1on o T ecreases 

with distance, and ends at the leading edge of 
234 u band, 

In the region ofz < v
2
t, there are 

two contributions for the concentration of 
230

Th. One of 

them is the decay of 
234 u that has been leached out from 

the repository. The other one is 
230

Th which is from the 

d f 
234. 

ecay o U at the repository and leaches out, As seen 

· I'' ~ 1 N ( t) the concentrat1"on of 
230

Th at z = o. 1n •1gure ::> •. , 2 o, , , 

increases with time. 

226R h . . . f h a as been m1grat1ng rom t e re-

pository just after the beginning of leaching and arrives 

at the location around z = v
3
t. 

As shown in broken lines, due to the 

5.35 

effect of the larger dispersion coefficient (D lx10 3 m
2
/yr), 

the concentration profiles of 
234 u and 

230
Th are smoothed out, 

h d c 
230 T·h Z V d" .h d' and t e ent or at = 

2
t 1sappears. But t e lsper-

sion hardly affects the leading edge of the 
226

Ra profile, 

. 226 .h h 1 1 . 1 h . . because Ra as a ;nuc arger ve oc1ty a ong t e m1grat1on 

path and ~ 3 is large. 
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Figures 5.4 and 5.5 show the concentration 

profiles of the nuclides after the end of leaching. Before 

the time of t=2xl0
5 

yr, the total amount of 226 Ra in the mi-

gration column of soil continues to increase (see Figure 5.1). 

h 'd h f h f 
226 

f"l b b d Since t e w1 t o t e curve o Ra pro 1 e ecomes roa er 

and broader with time, and the shape of the profile also changes 

5 with time, the highest peak does not appear at t=2x10 yr. 

Figure 5.4 shows the concentration profiles 

234 after the time when the trailing edge of U-band catches up 

with the first 
230

Th from the repository. 230
Th behind the 

234 
trailing edge of U has to migrate without any contribution 

from the decaying 
234u~band, and decreases with time by its own 

decay. The distribution of 
226

Ra is almost completely controlled 

by 
226

Ra which has been produced by the decay of 230 Th outside 

the repository. 5 230 In Figure 5.5 at t=lxlO , another peak of Th 

is d h ·1· d f 234 u growing aroun t e tra1 1ng e ge o . The peak of 
226

Ra 

at about 800 m is still increasing compared to that of Figure 5.4. 

Figure 5.6 shows the concentration profiles of the nuclides at 

h 11 1 f 226R . . the time when t e avera tota amount o a 1s a max1mum. 

However, the height of its peak is lower than that in Figure 5.2, 

230 
The two peaks of Th have almost same height. 

The time of 2xl0 5 yr is around the half-life of 
233

u, at which 

234 . 
the concentration of U 1s about half of its initial value. 
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-1 I 

5 3 C . f"l f 234U+230Tl1+226Ra re . - oncentrat1on pro 1 es o 

decay chain at t = lxl0
4 

yr. (Pure 234 u source at t=O, 

N.(z,t) ~ atoms/cm
3

. N~ = atoms/cm3 of 234 u at z=O, t=O. 
1 

4 Zf 4 2 
T = 3xl0 yr. KU = lxlO . KTh = SxlO , KRa = 5xl0 ). 
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Fi re 5,4 ~ Concentrat1on prof1les of U+ Th+ Ra 

. 4 234 
decay cha1n at t ~ 5xl0 yr. (Pure U source at t~O. 

v3t 

3 0 3 234 
N. (z,t) = atoms/em . N

1 
= atoms/em of U at z=O, t=O. 

l 4 4 4 2 
V=lOOm/yr, T=3x10 yr. KU = lxlO , KTh=SxlO , KRa = SxlO ) , 
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= 1 x 105yr 
-1 2 = 1 x10 /yr ~~-

= 1 x 103m 2/yr ~ -

---

230Th 

226Ra 

/ 
/ 

/ 
-/ 

/ 

I 
I 
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I 
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I 

,km 

I 
I 
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I 
I 
I 
I 
I 

re 5 5 ~ Concentration profiles of 
234

u+
230

Th+
226

Ra 

decay chain at t=lxl0 5 yr. (Pure 
234

u source at t=O. N.(z,t)~ 
3 1 3 234 l 

atoms/em , N = atoms/em of U at z=O, t=O, V=lOO/m yr. 
4 ° 4 4 2 

T=3xl0 yr. Ku=lxlO . KTh =SxlO , KRa = 5xl0 ) . 
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t = 105 yr 

0 = I x 161 m'1 yr 

0 = 1 x 1if yr 
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103 

10-2 101 10 
Distance? km 

' . 234 230 226 
Fi Concentrat1on prof1les of U+ Th+ Ra 

decay chain at t~2xl0 5 yr. (Pure 
234

u source at t=O, 
. 3 0 3 ~ 234 
N.(z,t) ~atoms/em . N

1 
=atoms/em or U at z=O, t=O, 

1 4 4 4 2 
V =lOOm/yr. T=3xl0 yr, Ku=lxlO . KTh=5xlO , KRa = SxlO ). 
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5.5.2.3 Concentration profiles of nuclides 
in the case of transient equilibrium 
sources in the repository at t=O. 

In the case of transient equilibrium, the 

relatively large concentration of daughters c230
Th and 

226
Ra) in the repository will have considerably large ef~ 

feet on the profile curves until around the time of the 

half life of 
234 u. ( ~I 1, f 1 · .c '" 

2 3 t"'u · "b h · ta - 1re or 1s a out t ree t1mes 

longer than that of 
230

Th). 

In the transient equilibrium case, the total 

amount of nuclides involved in the repository decreases 

monotonously with time. Then, the tendency may be ex-

pected that the maximum 
226 

concentration of Ra along the 

migration path will occur at an earlier time in comparison 

~ h f · · · 11 234 u · h · with t e case o. 1n1t1a y pure source 1n t e repos1-

tory. 

Figure 5.7 shows the concentration profiles 

of the nuclides at the time before the end of leaching. 

In the present case of 
4 T = 3xl0 yr, the total amount of 

226 R "d h . . ' "h . '1 h ta outs1 e t e repos1tory 1ncreases w1t t1me unt1 t. e 

end of leaching. As seen in the figure, for the case of 

small dispersion coefficient, the highest concentration of 

226
Ra is realized at z = v

2
t, at which the first 

230
Th 



DRAFT 

nuclide from the repository arrives. Because of the 

large concentration of 
230

Th between the repository and 

z ~ v
2
t, and the condition of v

2 
< v

3
, a hump in the pro

file of 
226

Ra occurs. The contribution of 
230

Th to the 

226 
concentration profile of Ra between the leading edge 

r 
234 ·u b d d t or an an_ z = v

2 
is relatively not so large. The 

general effect of the large dispersion on migration pattern 

- h h f 234 -u h is almost t e same as t e case o. pure source as s own 

in Figure 5.3 through 5,6. Figures 5.8 through 5.10 show 

the concentration profiles for times after the end of 

leaching. The highest peak of 
226

Ra occurs for the case of 

small D at the time when the last 
226

Ra from the repository 

catches up the first 
230

Th nuclide from the repository at 

After that, the height of the peak decreases with 

time. 

As seen in 
226 

Figure 5,10, a new peak of Ra 

is developed at 
234 

the trailing edge of U-band. The height 

of the peak at 
234

u-band decreases more slowly with time than 

the peak at z = v
2

t does, because the half-life of 
234

u is 

1 th tha t of 
230

th. _ onger an 
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5' 5. 3 Maximum Concentration and Isopleth of 226 Ra 

Figures 5,11 and 5,12 are the plots of the 

226 
Ra concentration occurring at various locations 

along the migration path for 234 the cases of initial pure U 

source in the repository and initial transient equilibrium 

sources. The two solid curves represent cases of different 

dispersion coefficients. Each point on the curve means the 

· 226 ·R " b '11 11 max1mum ra concentrat1on an o server Wl eventua y ex 

perience by sitting at a location long enough. Thus, the time 

when the maximum concentration occurs at each location is dif-

ferent. Each point is obtained by choosing a fixed location Z 

. 226 
and compute the Ra curve numerically for various times until 

a maximum concentration is obtained by plotting the concentra-

tion versus time for that fixed location. All these curves 

have a that means starting from the repository at Z 0 ' 

one sees an . . . 2 26R . 1ncreas1ng max1mum _a concentrat1on as one goes 

farther away from the site, until one passes a certain location 

where the highest concentration occurs, the nuclide concentration 

then decreases. This happens both for the case of initial pure 

234 u source and the case of initial transient equilibrium sources 

in the repository so that the decaying of the parents does not 

completely explain this increasing maximum 
226 . 

Ra concentrat1on 

phenomenon. In particular for the case of initial transient 
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equilibrium sources, this phenomenon is called the "Re~ 

concentration" phenomenon of 
226

Ra(B4). This reconcentration 

"h r 226R 1 f h p enomenon or a occurs a so .or t e two member decay chain 

230T. 226R . f .h b -h h~ a; s1nce or a t ree mem er c ain the uranium is pro~ 

. 1' "d' . 1 b d . 230 h h v1c1ng an aa 1t1ona source y ecay1ng to T , t e approach 

to the explanation should be similar for both cases of two and 

three member chains. 

Consider a simple model that only the decay 

of 
230

Th is significant in contributing to the source f 226R o a, 

and an observer is sitting near the repository. When the band 

of 
230

Th reaches him, he will detect 
226

Ra from the immediate 

decay of 230 Th, At the same time, 
226

Ra which is from the decay 

of 
230

Th at an earlier time also catches up to reach him because 

226
Ra is two orders of magnitude faster than 

226
Th. As the ob~ 

server is near the site and the nuclides are always migrating in 

the forward direction, it is the band of 
230 

Th between the site 

and the observer that contributes to the concentration of 
226

Ra 

at the observer's position, so that when he is farther away, a 

J b .. " 2 30Th . , .b . 1 . . anger and or 1s contr1 ut1ng to a .arger concentrat1on 

of 
226

Ra, therefore it explains the increasing slope of the 

curves in the above figures. 
230 Because Th undergoes decay 

also, when the distance of the b . . d 226R h o server 1s 1ncrease , a as 
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226 
to take a longer time to reach him and so more Ra may 

have to decay away before reaching him. On the other hand 

the number of 
230

rh decaying at an earlier instant is greater 

because less of the original 
230

Th has decayed at that earlier 

instant. Therefore the contribution to 
226

Ra are not linear 

with increasing distance from the repository. 

Eventually when the observer is at an even 

farther distance from the repository, the band of 
230

Th will 

have a lower concentration due to decay even though the band 

width of 230 Th may increase and so from there on the 
226

Ra con-

centration decreases with distance as shown by the negative 

gradient of the curves in the figures. Thus it is seen that 

one of the main reasons for this reconcentration phenomenon 

to occur is due to the fact that the daughter nuclides are mi-

grating forward faster than the parent nuclides. 

It is observed that in both Figures the 

dotted curves for the larger dispersion coefficients have their 

highest concentrations always under those of the solid ones of 

lower dispersion coefficients. Since for a certain instant, 

after certain time of leaching, there is a certain amount of 

nuclides along the path, if the nuclides are more dispersive, 

they will spread out more along the path, thus sacrificing their 

highest magnitude of concentration along the path. 
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In both Figures 5.11 and 5.12 the lo-

cations where the curves reach their highest point are 840 

m (for D=lxl0-
1

m
2

/yr) and 800 m (for D lx10 3 
/yr) for initial 

-1 2 
no daughter case and are 70 m (for D~lxlO m /yr and 86 m(for 

D=lxl0
3

m
2
/yr) for initial transient equilibrium case. The 

locations of highest point of the former case are much far-

ther from the repository than that of the latter case. As for 

the magnitude of the highest point, the latter case is about 

five times larger than that of the former, because of the 

initial inventories of 
230

Th and 
226

Ra at t = 0 in the repository@ 

The effect of the large dispersion on the distribution appears 

significant near the repository, in making the curve flatter 

and slightly lower in magnitude. One can see the effect is more 

clearly shown from the plots of isopleths of 
226

Ra concentration 

234 
given in Figure 5.13 and 5.14 for initial pure U case and in 

Figure 5.15 and 5.16 for initial transient equilibrium case. 

The abscissa shows distance (km) and the ordinate shows time 

( yr) , The isopleths are written for 
0 

the value of N
3

(Z,t)/N
1 

3 ~·2 -3 
from SxlO to 2x10 with an interval of SxlO for each iso-

pleth for the former case, and from 2xl0-Z to Sxl0- 2 with an 

-2 
interval of 2xl0 for the latter case. They indicate that 

the time-dependent maximum 
226

Ra concentration at any given 

location increases with distance until the highest concentration 
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is reached, after which it decreases monotonically with 

distance. This is mainly due to: a) the reconcentration 

230 phenomenon due to the distribution of sorbed Th through 

the media, 
. 226 

and b) gradual growth of Ra in the waste 

material in the 
234 

case of initial pure source. Let us 

consider }igure 5.13 and Figure 5.14 which are for D=lxlO-l 

3 2 
and D=lxlO m /yr. As shown in these figures the effect of 

dispersion on the slope of the isopleth is less important 

except near the repository. The broken lines in these figures 

226 
indicate the time when the concentration of Ra at any given 

location reaches its maximum value. One can see that the 

broken lines agree with the ridge line of the isopleths. 

Each ridge line lies on 
4 the line of T = 3xl0 (leach time) 

near the repository, until a distance around 0.1 km, and 

finally at large distance it lies asymptotically along the 

234 
line t=Z/V

1 
which is the locus of the leading edge of U 

band. The behavior of the ridge line is not so much affected 

by the change of the dispersion coefficient for the case of 

pure 
234 u source. Contrarily, the effect of the dispersion is 

much more important in the case of initial transient equili-

brium as shown in Figure 5.15 and 5.16. First, comparing the 

plots in Figure 5.15 and Figure 5.16, the slopes of each iso-

pleth on the side of earlier time are almost the same, but the 

slope of the isopleth on the side at a later time in Figure 
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5.16 is more gentle than that of Figure 5.15, especially 

around the region 10 ~ 200 m from the repository, This 

means that h Cf f 226 1 1 h t e ei ect o. Ra asts onger in t e case of 

larger dispersion. For example, the time interval for the 

· ~ 226 R h h 1 f 2 ]0~ 2 ' concentratJ.on OL a to reac t e va ue o · x . lS 

about 62,000 yr for the small D case, and is about 73,000 

yr for the large D case. It is because 234u _ d 230Th an .. , 

parent nuclides of 
226

Ra, have long tails towards the direct~ 

ion of the repository due to the large D after the end of 

leaching (t > T). Second, more important difference appears 

in the behavior of 
226 

the line of maximum concentration of Ra. 

For the small D case, the line almost agrees with the line 

t=Z/v 2 which is the locus of 
230 

the leading edge of Th, from 

the repository site up to 60 m from the repository. Then it 

lies on the line 
.6, 

3xl0 yr (leach time) up to Z=200 m, and 

finally t comes asymptotically to the line t=Z/v
1

. For the 

large D case, however, the locus of the highest concentration 

does n.o t lie on the line t "' Z/V
2 

but instead it lies on the 

line t - 3xl0 
L,t 

from the yr repository site up to a distance of 

This behavior may come from the shape of the t=Z/v
2 

230 
edge of the Th band. For the small D case, it is so called 

box shape, and the peak of the highest 
226

Ra concentration is 

seen at Z = v
2

t in Figure 5.15. But for the large D case, 
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this peak is shifted to the right because the t = Z/v
2 

edge of 
230 ·~l'h b d . an 1s being smoothly spread out. Thus, 

one can find that the effect of dispersion to the isopleth 

c•l f 226R , . . pror1 e o a concentrat1on lS more lmportant in the case 

of initial transient equilibrium sources in the repository. 

Furthermore, as seen in the isopleths, the slope of the iso-

pleths around the summit (highest point) is not steep, so 

{' J . h h d FC c 226R . . . f ror eva _uatlng t e azar .ous errect or a, 1t lS 1.nsu -

226 
ficient just to find the maximum concentration of Ra at 

each location, but one also has to examine the distribution 

f 
22 6 . d h 1 . . h . o. Ra concentrat1on aroun eac ocat1on us1ng t e 1so-

pleth plotting. 

5. 5 '4 Parametric Study 

5. 5. 4' l The effect of sorption equilibrium 
constant on the concentration pro
files of 226 Ra. 

Figure 5.17 shows the concentration profiles 

,- 2 26.R or ra at various locations for different sorption equili-

5.59 

brium constants of 
226

Ra (K
3

/10, K
3

, lOK
3

) in the case of 

initially pure 
234 u source, at t Sx10

4 
yr and with D=lxl0-

1
m

2
/yr. 

In the figure, the abscissa is a linear scale in units of Z/v
3
yr 

d . . - ' f 226 R . 1 . h . and the or 1nate lS the concentrat1on o a ln ogar1t mlc 

scale, The K
3 

and K
3

/10 curves decrease with ZK
3
/v linearly, 
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~4 ~1 
and their slopes are ~4.69 x 10 yr for the K

3 
curve, 

~4 
and -4.33 x 10 yr 1 for the K

3
/10 curve. Since the decay 

226 4 1 
constant of Ra(~ 3 ) has the value of 4.332 x 10- yr-

same as the value of the slope for the K
3

/10 curve, so one 

can find that at distance far from the repository the con-

• r:. 2 2 6.R d . 11 d . centratlon or a ecreases exponentla y accor 1ng to 

~3(Z/v3) 226 
e for the case that the velocity of Ra (V

3
=v/K

3
) 

is much larger than that of its parent nuclides. This char-

acteristic can be explained by the explicit solution for the 

dispersion free case and step release mode (5.16). For 

v
1

t < Z < v
3
t, the solution is as follows: 

[ 
D:n B~~ ( e-6.),c-t- %1~ e'" C-t- :.</iJ\)} 
?\~--~ 2) l 
~ ~ e- A23 C-t-;t./v0 E.A2 (t- Vv\) }] 

/\2- 1::-:.'23 

(5,44) 
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Let 1 s consider the case that A
3 

>>A
1

,A
2

,v
3

>>v
1

,v
2 

and 

t>>l/A
3

. These conditions yield that A
3 

Ai~A 3 ,v 3 -v 1 ~v 3 
l ···A,t h . . 2 _ anc e 3 "'0 w. ere 1. "' 1 or . With this approximation, 

one can rewrite (5.44) as 

(5.45) 

where 

Gr(t) 
····\1t ~~1t 

·s3\ e + B:s2 e 

At~)- ( 'D~~ B" ( ~,t:,\jt e- )\\b ) -+ e ~ 

\)I '\.h. r~j r:; :A I-/:::,~-~ 

j\ '8 ( e·C.al'L <>-d:)J + J\.3 \~ 
(\ I -- ,L'i.;q 

(5.46) 

Using the superposition theorem, one can obtain the solu-

226 b 
tion of Ra,N

3
(z,t), for the band release. 

5,62 
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(5.47) 

Thus, the solution for the band release shows that the 

concentration of 

tially according 

226 d Ra ecreases with distance exponen~ 

to e 
~"A 3 z;v 3 . 

5.5.~2 The effect of sorption equili

brium constant on the maximum 
discharge rate of 226 Ra. 

Figure 5.18 and 5.19 show the effect of 

226 
vary~g the sorption equilibrium constants of Ra on the 

maximum discharge rate of 
226

Ra for D=lxl0-
1

m
2
/yr and 

D=lxl0 3 m
2
/yr under the condition of initial pure 

234 u 

4 source and T ~ 3xl0 . An estimation of initial activity 

f 234_ d d ·or U pro uce in a nuclear reactor after being cooled 

for ten years is taken to be 7.67 (Ci/GWe-yr)(B2). As 

smaller values of K
3 

(5, 50, 500, 5000) than that of K
2 

(50,000) are taken in all curves, the curves have their 

highest point at locations away from the repository, The 

values of the highest point and the extent of the curves 

5.63 
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increase as K
3 

decreases. However~ in spite that the con-

. f 226R . h h . , centrat1on o a 1n t e water p ase 1ncreases proport1on-

ally as K3 decreases 9 the highest magnitude and its location 

are not shifted proportionally. Comparison of Figures 5.18 

and 5.19 in regard to different dispersion coefficients show 

that the lOK 3 curve in Figure 5.19 is affected by large D in 

its magnitude and range. But the effect of the dispersion on 

the curves for K
3

, K
3

/10 and K
3

/100 is slight except near the 

repository. This can be explained by the fact that for small 

K h . 1 1 . V h b h ' f 226 R ' ' 1 
3

, t at 1s arge ve oc1ty 
3

, t e e av1or o a 1s ma1n y 

controlled by the convection term of the transport equations 

( 4. 2) • 

5 . 5 . 4 . 3 Effect of leach time on the 
maximum discharge rate of 226 Ra. 

Figure 5.20 and 5.21 show the effect of 

varying leach time on the maximum discharge rate of 
226

Ra for 

D = lxlO-l and 1 x 10 3 m2 /yr at various locations for the con-

234 
dition of initially pure U source. 

3 Comparison of the T=3xl0 

curve and the T ~ 3xl0 4 curve in the figures shows that both the 

value of the highest discharge rareand the discharge rate after 

the highest point of the T = 3xl0 3 curve is slightly larger than 

those of the T = 3xl0
4 

curve. However, the discharge rate of 

the T 3xl0 3 curve near the repository is much less than that 
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of the T=3xl0
4 

curve. Due to the small leach time of 3xl0 3 

and the initial condition in the repository at t = 0, 230 Th 

" . 234. h produced from the aecay1ng U near t e repository is of 

lesser amount, so that at a location near the repository 

one sees a smaller maximum discharge rate of 
226

Ra. In the 

case of T = 5 
3xl0 yr, the concentration of each nuclide which 

leaches from the repository is rather low, because it is in

versely proportional to the leach time, and some of 
226

Ra 

produced in the repository has decayed away without coming 

out of the repository. Hence, the magnitude and range of the 

226 
influence of Ra for T 

5 
3x10 yr are less than those for 

T 3xl0
3 

and 3xl0
4 . It should be noted that the location of 

the highest point does not shift much in spite of the large 

variation in the leach time. The effect of dispersion is sig-

< 
nificant only for the curve of T = 3x10- yr, because it has a 

sharper shape in its distribution. In the band release mode, 

the leach .time may have a close relation with the tightness of 

the radioactive waste container in the repository. The highest 

226 
discharge rate of Ra depends on the leach time. 

Figure 5.22 shows the dependence of the 

226 
highest discharge rate of Ra on leach time. As seen in the 

figure, the dependence is quite different between the two cases 

234 
of pure U source at t ~ 0 and initial transient equilibrium 

sources in the repository, For the former case, very broad 
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plateau is seen in Figure 5.22. It means that the 

highest discharge rate of 
226

Ra has little dependence 

t -h t · t' ht h on.ly pure 234 u on e con alner -lg ness w en _ source is 

present at t a o. Contrarily for the latter case of initial 

transient equilibrium sources, the highest discharge rate 

depends strongly on the leach time except around the region 

of T 4 10 yr. Both of the right hand side and left hand 

side of the curve in the Figure for the case of initial 

transient equilibrium source has a slope close to -1. It 

means that the tightness of the container for radioactive 

waste is very important for the highest discharge rate of 

220
Ra in the case of initial transient equilibrium sources 

in the repository. 

5.6. 1 ~duction to a three member decay chain. 

Half-life, sorption equilibrium constant, 

migration speed, and migration distance in a half-life time 

are shown in Table 5.2. 

5.71 
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Table 5.2 

Half~life, Ty
2 

2.14xl0 7.4x10 
(yr) 

vi 
1~ (m/yr) 

2 4 
lxlO 1.7xl0 

~3 
6xl0 

1.62xl0 

4 lxlO 

229Th 

7.34xl0 

6 ~4 3 1 
2.14xl0 4.44xl0 1.62xl0 1.47xl0 

(m) 

*Assuming V = 100 m/yr 

225 
Ra 

4.lxl0 

8.2xlo~ 3 

5.72 

As seen in the above Table, 
233

ra and 
225

Ra have very short half-

lives, and the distance of migration in their half-lives, v.x 
1. 

(half-life), are very short in comparison with those for other 

th;:·ee nuclides. So, we may consider as an approximation that 

23 JPa and 225 Ra are in secular equilibrium with 
237

Np and 
229

Th, 

at eve y location and at any time. 

Then, we can apply the solution for three-

member decay chain for this five-member decay chain, as if it 

were the decay chain of 
237

Np+
233

u+
229

Th. As this approximation 



DR.A.FT 

is already verified in Section 4.5, we may expect that the 

results will be close enough to that obtained by the exact 

solution for five-member decay chain. 

This decay chain is also very important in 

the discussion of waste management because it leads to the 

d . , . f" 225R pre .lCJ:J"ng o a. As seen in Table 5.2, 
237

Np migrates a 

very long distance in its half-life. It means the possibility 

of a wide haza dous spread due to Ra 225. 

5 . 6 ' 2 

discharge rate of 

Di s c h a r g e r a t e p r o f i 1 e s o f 2 3 7 N P ·+ 
2 3 3 U+ 2 2 9 T h 

( 225 Ra) decay chain 

Figure 5.23 shows the space-dependence of 

each nuclide at t "" 5x10
4 

yr under the con-

ditions of the band release of T "" 3x10 4 
yr and initial pure 

237 
An estimation of the initial activity of 237Np Np source. 

5.13 

produced in a nuclear power reactor having cooled for 10 years, 

s taken to be 14.4 Ci/GWe yr. (B2). 233 Pa d 225R . an a are 1n 

secular equilibrium state with 
237 

Np and 
229

Th, respectively. 

The figure shows also the effect of varying the dispersion co

efficient on the discharge rate profile of each nuclide, 
237

Np 

migrates very fast, in this hypothetical three member decay 

chain, the migration speeds are in the increasing order of v
1

, 

v
2 

and v
3

, respectively. Thus, the first two nuclides have the 

tendency to leave their daughters behind them. The dip of 
225

Ra 

between 2=V
2

(t-T) in the D=lxlO 1 curve, is due to the competition 



5.74 

DRAFT 

b " . . " f 225 . h etween the 1ncrease 1n concentrat1on o Ra 1n t e re-

pository with time and the decrease in concentration of 225 Ra 

- . " 233.( b behind its parent nucl1de U ecause of its decay. The ef-

feet of the large dispersion is to smooth and spread out the 

profiles of each nuclide. Figure 5.24 is the plots of the maxi 

mum d " .h f 225
D 1 " d h 1sc arge rate o na versus .ocat1on un er t e same con-

ditions as those of Figure 5.23. The maximum discharge rate 

decreases monotonously with distance from the repository. The 

small D curve might be discussed in three separate regions along 

the migration path. In the first region, Z<~0.2 km, the maximum 

discharge rate at any given location happens to be at the time 

when the last 
229

Th produced inside the repository passes the 

location. In the second region, 0.2 km < Z < 9 km, the maxi-

225 
mum discharge rate of Ra occurs around the same time at which 

h .k f 233 t e pea o_ U, 
225 229 

the parent of Ra ( Th), occurs. In the 

last region, the flat part, 9 km <Z, the time when the maximum 

discharge rate appears is Z/V 1 + 1.7 x 10 5 
yr. It is seen 

that this flat discharge rate extends very far from the reposit-

ory because h -· l"d 237 N h 1 . " t .. e tlrst nuc 1 e, p, as a arge m1grat1on 

velocity and a long half life. In this case, the reconcentration 

r: 225 d phenomenon or Ra oes not occur at any location because of the 

229 
sorption equilibrium constant of Th is assumed larger than 
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229 that of parent nuclides so that the migration speed of Th 

is smaller than that of 233 0. One should notice the differ

ences for the occurrence of reconcentration between 234 o+ 230 Th+ 

226
Ra (VRa >v 0 >VTh) decay chain and 

237 
Np+ 

233
o+ 

229
Th 

225Ra (vNp >v0 >VTh) decay chain, 
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6. NUCLIDE MIGRATION THROUGH A GEOLOGICAL MEDIUM 

OF MULTI-LAYERS 

6.1 Intr duction 

This chapter deals with the problem posed by a 

multi-layer system. It seems indeed very likely that the 

nuclides will encounter different media, while being trans 

ported in the water. These media may be characterized by 

different values of: 

v = water velocity 

K.= the sorption constant, this reflects the 
l 

different behavior of the nuclides when 

adsorbed on chemically different media, 

s "" f 
the cross sectional area of the water phase, 

E ·- the 

D.= the 
l 

Each layer is 

v,k.,s, etc. 
l 

porosity 

dispersion coefficient, etc. 

supposed to have constant properties of 

The transport equation discussed in the pre-

ceding chapters is valid in each layer. The Boundary Con-

clition at the boundary of two layers is given by the con-

tinuity of nuclide flux and the nuclide concentration. For 

the case of no axial dispersion, a recursive solution can be 

easily found by the use of the general solution for a one 
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medium system (see Chapter 4). Some applications will 

be given for a two media system: 

a) A general formula, for a general release 

mode at the respitory, and an i members chain, 

b) A general formula for a step release and an i 

members chain, 

c) A step release formula for the first, second 

and third members of a radioactive chain. 

The solution for the band release can be found by the super-

position prihciple, which has been derived in Chapter 3. 

For the case with axial dispersion, a recursive 

formula is given for a two media system and a general re-

lease mode at the repository. 

fl.? Iransport Equation and Conditions at the Layer 

In this chapter we consider the case of a multi-

~ayer system. Lets characterize each layer by the super-

script, £, at the left, e.g., 

£ 
N.(z,t) 

l 
concentration of nuclide i, at z and 

th 
t in the ~ layer, 

6 . 2 
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£D axial dispersion coefficient of nuclide i, 
i 

in the £th layer, 

£ 
v • water velocity in the £th layer, and so on. 

Lets furthermore characterize by £Z the coordinate between 

th th 
the £ and the (£ + 1) layers. 

1 2 

1st layer 2nd layer 3rd layer 

3 
z 

Figure 6.1 Multi~layer Pathway 

z 
4th layer 

We assume the following parameters to be constant in each 

layer: 

£ 
D., 

l 

£ 
vi' 

Under these assumptions the transport equation, as 

discussed in Chapter 2 is still valid in each layer. 

th 
port equation in the ~ layer 

(6.1) 

where the operator RZi is defined by 

( 6. 2) 

Trans~ 

6.3 
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At the interface ~z we must have the continuity of the 

nuclide flux, that the number of atoms of nuclide i 

leaving the layer t per second is equal to the number 

of atoms of isotope i entering the layer (~ + 1), per 

second: 

The term ~D 
i 

o~N,/oz represents the transport by diffu~ 
l 

" d h ~V~N b " s1on an t e term , y convect1on, 
l 

By introducing 

Jld~ .. QD I " - . \. ~~..> ( 6' 4) 

and by the use of the conservation of mass of water, 

( 6. 5) 

we can rewrite (6.3) as 

( 6 '6) 

where 

( 6 '7) 

6. 4 
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In most cases, the water density can be considered a con-

Q, 
stant, therefore the term I can be set equal to unity, 

Since the transport by diffusion is independent of the 

transport by convection, (6,6) can be split into two equa~ 

' d ( Q,_ • 'd d b 1 t1ons, an we get l 1s now cons1 ,ere to e equa to 

unity): 

at 
(6.8) 

and 

at 
(6.9) 

6.3 Analytical Solutions for Non-Dispersion Case 

We have the following problem 

Solve 

~"~ d£Nt + R.k)
2
N1,->. ~i/ \,,cf.. L = Qk ':\ SIN 

v ;:j:J{ l Jt I !'\(,/\\, I'-lL ~-1 t-1 H 

(6.10) 
with 

LC. (6.11) 

B.C. (6.12) 

(6.13) 

Letts define for each interval £the new variable: 

(6.14) 
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In terms of this variable. we-have now the problem: 

Solve 

with 

LC. ' I 

6.6 

(6.15) 

(6.16) 

B.C. (6.17)~ 

where 
1 ~.(t) is given by the repository release (6.12) 

l 

and 

(6.18) 

and 

t < 0 ' aiQ J$ 

If (6.15), (6.16) and (6.17) are compared with the 

problem posed in Chapter 4.4 we see that we have the same 

problem. We can therefore use the general solution (4.117) 

shown in 4.4 for each interval. For clarity's sake, lets note 

a 

(6.19) 

The parameter N~. which appeared explicitly in the pre~ 
l 

vious chapters has now been assimilated with the symbol 

1(/)(t). 
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where ga¢ represents the convolution product 

Q, Q, 
represents the dependence on ~ (r:·) 1 (t) 

~ i ' ~ 2 ' 

Q, 
and cP.(t} l - -

Q, 
' • . (I) • ( t) . 

l 

The other symbols are the ones used in Chapter 4, The 

Q, Q,v 
superscript, Q,, means that we must take v = -- when

i Q,K. 

ever the value vi appears. The solution for eacfl inter-

val is then: 

h >(,~ I 'b • • b (6 '8) t e VJ. s elng g1ven y ,J. , 
l 

Finally, in terms of z we have 

e 1" r ..e-1 1~ ) NU:i,t)= !V·{:i- l.b~ ~.ctJ 
L t (6.21) 

where 
1¢. (t) is given by the nuclide release mode at the 

l 

repository and 

~2 2 

Equation (6.21) is a "doubly recursive" solution, i.e. it 

is recursive both in space and in the nuclide. One must 

6 . 7 

calculate first 
1
N.(

1
z,t), for j = 1,2,3,.,i, using equation 

J 

(6.21), then calculate 
2
N.(

2
z,t) for j = 1,2, ... i, using the 

J 
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5I, 
previous results and (6.21)~ and so on up to N.(z,t). 

1 

6.4 Application of Recursive Solution to a Two Media 

System 

6. 4. 1 General release mode at the repository: 

\o.(t) 
1 

We have: 

(6.22) 

and (6.21) yields: 

. 
L '. 

2-D'-~J 
r,"" 

(6. 2 3) 

6.8 
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(
1Sr,\T\(t') ~ \.¢1(-t:') )t=t~(z~z 1 )/2vi means that one 

must first perform the convolution product using t~. 

then set tp=t~(z z
1
)/

2vi. 

6.4.2 

Using l~.(t) 
l 

Step release 

1N.s(z,t) is given by (5.13). 
l 

B.(t) in eq. (6,23) we get 
l 

LN~ (l:lt )= i_, Bu1 
2 G~(:;,f> .._F/r;.t.~1 J + 

7ef 

' 

6.9 

+ }~ i 1_ i, L Bjp '1-1 ~~ 1 '[;~ r U! ['F~ (l, t. /17 J 'F~ io. t. 'Ll,, l} 
)""'! WI""J ~j f""- 1 

1"'*-Wl 

+ ~'LLtLtL B. 'H'j-1 
D . . " r r,w. j-1 mJ r"'J of"" I (3=-ol. fAJ,.r:j. 1"" I 

l"~w. lu'*'J3 

. [ [ ~ f! ( ~' i. ~ r ) - ~ F: ( :t. t ) 2Dr, ~ ) J + ( :4 r, ~ - A 1 ) • 
~V'.Wl- 1,6,wp. 

· [ "F !.' < t. ±, 'Llr~) --"T ~ ( l.t ''.6wr1 J} (6.24) 
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where 

--Aq 8 I . } , . :;z +) ) r \ ~ , (6,25) 

(6,26) 

(6.28) 

);., 
(6,29) 

q 
are the coefficients in the Bateman equation: See 

' apter 3, 

.~.2 Step solution in a two media system for 

a three members chain~ no dispersion 

By substituting i = 1,2,3 into (6.13) and 

(6.24) one p;ets: 

' G~ ' 1 r ' f\ 12 
i U, r) r, D, + ,/\1 ) Dn - 0 ~ ?; ~ 1 I ( 6' 30) 
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"'N',\ I 2G\ l 2F' + '\ B ' 1 ('* 1 ~;)= l(~,t..) ~ (2-, ,/\1) 11 J 

Second member: 

Third member: 

' I 

(6.31) 

(6.32) 

(6.33) 

(6.34) 

2 ~~; ( 1 I { ) =: ~~ ( ~ I t ) + 2, ~>)I I t ) + t; ( il 1 t ) ; ( 6 • 3 5 ) 

::12 :z, 
where: 

(6.36) 

6 .11 
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·+ ' H" o., ' ~ G_'3 ( ~ , + ) [ ~ r I C ':) . .L \ A ) 9. F ' ( ' t j\ ) J +-... o v r3 .z:,C,.L:>-2\- 3 ~~ ,t, 

+ 1 H ~ B ,, [ G! ( l, t ) ( t F/ ( 2 , i, 1\, ) - £ F { ( ~ ' t' '.6) ,_J r 

-+ l\4B,,Q G~ ( b (f.~) ( ~' t, A\) - .RF;:S ( 2, t) 1 4~) )J + 

t 'H"BJ.\tG; (t,t) (.eF32.(),t) '1\JJ -- iF)).(l,t, \)j + 

(6o37) 
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(6.38) 

25B:(:t,t) = "t--1 2 B,, 2 G>t-.~l[:!!=1 1 C:t-,·t, 2.6t.,!- ~~ 1 (2?,-t)")j+ 

-r 'lH 3 B II 2G: u I + { ~ F,' ( d. I i I :< ~ 3 I ) - '-~I (l I t I A ' ) J + 

2rL,B,~"G~ c.~,i)('lF~ c~,t~ !\,)- 2 G1
(2,t, Du)Jt 

-+ 2 H+E,, d.G~ c~.-t) [ 
2 F

2
' (;?I 1:, ":63J- '2F;'( 1, i I 'A,) J + 

4-
2 H3B/G'3 c~,t:)(

2 F;' (?.t. :\,) ~ JF~ c:t,t) 2..63JJ + 

* 2 !-··\48,,'G~ c;(,tJ( 2 f=;1 u.t, ?\,) ~ 2F~' (21,t, 2iJJ,)J-~

-~-- 2 H'5B:?\ 2 G: (>!, t)["·F: (2Lt, 2D?2)-- '2~ 2 
(i1,-L A,) J + 

--~- 1t-L;B:.~2G: o,t)(2r-~2 ( ?, t:J 1_63J--"-r=t (J~-L Al·)J + 

6.13 
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+ ,H, B,,'G; P, t {'t=; u. +, A, J - 'F; n, +, '.6,.1 J 1-

+l~bBn2G~u-,r-f2~.._(l,i,Ab)- 2 !=)"tcllt) 2b 3JJ 

(6,39) 

2G: ,+l = ~H 5 1 H 7 B~, 2G~(~,t) [M~.(i?,t,~~) + M;/2<,tJ 1.6~_,)]+ 

-t 
2 H1'H 7B11

2 G;n-,-tJ(N:3c27,-t,/\,) + l'"'t~(E,t}'-62,)}

~ :2 H 5 I H 7 B, I 2 G~ ( 2, t { M ~ 2 ( ) I t: ) 14~ I ) + Ml~ ( ~I t A; ) J -

~ 2 H,J-l7 B11

2G>?, t) ( i'V\~/ii • L A,) + M~3 ( ~' ·L '6;n) J 

(6,40) 

anc where: 

?-"'fv~ -
1 /V'IY\ - 1/vr (6.41) 

6.14 
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(6.44) 

(6.45) 

(6.46) 

h (t) = step function 

(6.49) 

(6.50) 
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(6.51) 

(6.52) 

(6.53) 

(6.54) 

I'J\ ~m ( :i , t 1 A, ) = 
2 F: ( 'l- 1 i 1 A, ) - 2 F""~ (:?: 1 i 1 

2DV'm ) ( 6 . 55) 

(6.57) 
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6,5 Recursive Formula for a Two Media stem with 

Diseersion 

For this case we use the transport equation with 

the source term, We have the following situation as 

shown in Figure 6,2, 

repository 

z 

1st medium 2nd medium 

Figure 6,2 Two media system with disperion 

The interface between the two media is set at z = 0, The 

repository is set in the first medium, at z
1

, 

The boundary condition at the media boundary has been dis-

cussed in Chapter 6,2, We have therefore the problem: 

Solve 

"\ 

2 L\. 2 Nl o, t:) = :\~-~ 
2 

k~.-~ 'N tr-1 

' ~::5'0 

(6,58) 

(6,59) 

6,17 
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with 

I. c. 

(6,60) 

(6.61) 

(6.62) 

(6.63) 

'd~ 'diNj. 
l_d.: d 1 

at ?: = 0 
(6.64) 

This problem is solved by the Green's method. We seek 

first the solutions for a unit pulse (in time and space) 

in the first medium, then in the second, We solve 

A, 

ILLLVl~ ( l, t ~ ~ /T) =-

(6,65) 
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With the initial conditions (6.60) and the boundary 

conditions (6.61) to (6.64). 

Then we solve 

""" f 1 l_~ Rn,( ( z It ~ I l) = 0 

A 

1 2Li Rm ~ UL t ; ) , T') = ~ ( ~ ~ ~ ) ~ ( i ~? ) · ~ > o, ~ ~ o , o ~ ·r s t 

(6.66) 

with ditto initial and boundary conditions. 

1
N (z,t,~,T) represents the response in the first medium 

i 

to a pulse happening in the first (Left) medium at z=~ and 

t T. 

1
M. (z,t,~,T) represents the response in the second medium 

l 

to a pulse happening in the first medium at z = ~and t "' T. 

On the same way, i and RMi represent respectively the re 

sponses in the first or second medium to a pulse happening 

in the second (Right) medium. (6.65) and (6.66) are solved 

by taking the Laplace transform with respect to t: the 

equations are now ordinary differential equations of second 

order inone variable, z. These can be solved, and yield 

6.19 
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Lrv Lrv 
the Laplace transformed solutions N.(z,s), M.(z,s), 

1 1 

RrvN ( ) RrvM ( s) By the use of Laplace transform • Z 9 S I •• 2 1 • 
1 1 

L L 
tables, one finds then n

1 
(z,t), Mi(z,t) 1 etc. 

. L L R R 
These funct1ons: N., M. 1 N., M., play then the role 

l l l l 

of a Green kernel, The final result is then~ 

where 

t 00 

R VI, 0 , t ) " r lJ R \'lc (l, C ; ~ , ·C) ' t q , () d \ l d '! 
0 () 

LVli ( ;,, l) 5 f[ f L" O,t; 'p/{. (), 't) •!]de : 
0 

em, ll, tIs f[ f\,, P.t :\.c) 't ,c \, T)d l) h 
D 0 

(6.67) 

(6. 6 8) 

~<o 

(6.69) 

7<0 
(6.70) 

2. >O 

(6.71) 

2 /' 0 

(6.72) 

6.20 
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; ~ <' 0 

(6,73) 

~ >o 

(6,75) 



6.22 

DRAFT 

e I:/2 ~ ~ ~ /2 1d ) 1 2 • 
Lmdz.t.~,t; = ~G-_~ t h (-t~t:)l 't{C~~J,1~'t)-

~ h( I '2 P~~ ( L :i? ) t -'l ) ) : ~ < 0 

(6.76) 

(6.78) 

_Qh( 1 - [-"wJ + ~/4t 1u'( 'd[] 
~-, ( >?, t) = ~- e /, t: 7 a 

(6.79) 

'F,'; (>,~,1:-l"' ( e-A,u JP,i(1-t~,-t-u)du : t>o 
() 

(6,80) 

Pp l (;z t-U) , 
1 J 

(6.81) 
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.Q tcx,-t-u) 

2 ( t- u ) 

0 kR ( J I l) ) d u t > 0 

(6.82) 

(6.84) 

---~~-~}It kv;:d J-

(6.85) 

6 0 23 
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Notice: The superscript i in £F
1 

1 , 

'h £ means t at one .must use v., 
l 

9, 
d ' ' l 

£ w. etc whenever 
l 

£ w. etc appear in the definition. 
l 

2 d I\) -::~.c:L:lL. 
'v~2·u 

"'-d 1V+ 1d~ 

'v "V 

(6.86) 

(6.87) 

(6.88) 

(6.89) 

6.24 
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7. CONCLUSION 

The research in FY-1979 is aimed to elucidate the 

following problems: 

1) The fundamental transport equation governing the 

nuclide migration, 

2) The relation among several nuclide release modes 

from the repository, 

3) R . d 1 1 . f .th b ecurslve an genera so utlons o an l mem er 

chain migration for one-dimensional water path and 

arbitrary release modes, 

4) Application of the recursive and the general solu-

tions to three-member decay chain and the elucidation 

of the migration features for some most important de-

cay chains, 

5) Nuclide migration through the media of multi-layers. 

To summarize, the following results have been obtained: 

1. The fundamental transport equations governing the 

migration of nuclide decay chain were derived based 

on the phenomenological approach and with help of 

volume average concept. In case that the sorption 

and the chemical reaction processes are attained to 

be equilibrated, the fundamental governing equation 

is given by equation (1). 



where 

N. 
1 
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concentration of .th l'd 1 nuc 1 e 

7' 2 

(1) 

in aqueous phase 

K. 11 t . 'l'b . f .th l'd overa sorp 1on equ1 1 r1um constant or 1 nuc 1 e 
l 

A, radioactive decay constant 
l 

f. nuclide source term, z=distance, t=time 
l 

D. effective dispersion coefficient 
l 

v groundwater velocity 

l· The relationship among several release modes has 

been d:i.scussed. The release modes :i.nclude a) :i.mpulse, 

b) step, c) band, d) linear leach rate, f) fractional 

leach rate characteristic to individual nuclide. The 

transformation to yield different solutions from the 

solution of representative release mode has been dis-

cussed. A general superposition theorem has been 

developed for the propagation of chromatographic bands 

with radioactive decay, This provides an exact method 

for constructing the space-time dependent concentration 

resulting from a source of finite duration (band release) 

by superposing time-displace solutions for source of 

infinite duration (step release), 
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3. Recursive solutions of the transport equations 

in one~dimensional pathway with and without disper~ 

sion have been developed both for a generalized 

7,3 

source boundary condition and for a generalized con~ 

centration boundary condition. Solution for any radio~ 

active nuclide in an i member decay chain in one di 

mension and without dispersion has been evaluated. 

~· Explicit solutions for three member chains in one 

dimensional transport have been developed for a source 

of constant leach rate, with and without dispersion, 

using a source boundary condition which specifies a 

time~dependent concentration of leachant at the source. 

The solution has been programmed, 

Solutions for one-dimensional transport with dispersion 

have been developed for a time-dependent plane source. 

The results for a three member decay chain have been 

programmed, The error due to the usual assumption of 

a time-dependent concentration in the leachant at the 

source, which ignored dispersion at the source, have 

been evaluated. 

The explicit solutions for an i member decay chain 

without dispersion have been developed for the above 
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five release modes, 

The migration features for the most important two 

decay chains, d 237NP 233p an + a+ 

233
u+

229
Th+

225
Ra, have been elucidated with the help 

of the above solutions, Th · 1 th for 
226

Ra ~n e :1sop e s _,_ 

the water pathway have been denonstrated, in which the 

peak concentration of a nuclide in the moving sorption 

band can increase with distance travelled through the 

medium, Parametric analysis for the migration features 

has been carried out for the dispersion coefficient, 

the leaching time, the sorption equilibrium constant 

and the initial ratios of nuclide sources at the 

repository, 

2· Analytical expression for the nuclide migration 

through one~dimensional multi~layered media of differ-

ent hydrological sorptive properties have been developed. 

This expression is of recursive type with respect to 

media and nuclide decay, The analytical explicit solu~ 

tion for two media and three member decay chain has been 

obtained for dispersion free case, The recursive solu-

tion for two media with dispersion has been developed. 

The analysis in 2. to 5. has been carried out based in 

equation (1), which was derived by assuming equilibrium sorp-

tion and chemical reaction processes, 
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A. 
l 

A. (j) 
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a 

B. 
l 
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8. NOMENCLATURE 

Interfacial area in the averaging domain 

Coefficient defined by (2,55 ) 

: Defined by (4.11 

Function defined by (6.36) and (6,37) 

Interfacial area per unit volume of geological media 

Coefficient defined by (2.55) 

Bateman equation 

Bij Bateman coefficient defined by (3.12) 

B~, Modified Bateman coefficient defined by (3,23 ) 
:LJ 

~ 

1T f7rm : Defined by (4.121) 
\Azoj 
Y''-';m 

i 
Function defined by (6.38) and (6.39) 

Concentration of k~th chemical species in ~ phase 

0 

Ck~ Fluctuation concentration of k-th chemical species 

in ct~phase 

C(~1 ) (s)::: r·+r. ( )Jr-}J~J·) I Defined by (4.116) 
"'""J 
'(',\;; W\ 

2\os 
G

3 
Function defined by (6.40) 

D 

D ,·~ 

D. 
l 

Axial effective dispersion coefficient (mean value) 

Axial dispersion coefficient defined by (4.41) 

Effective dispersion coefficient for i-th nuclide 
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Dispersion coefficient in fluid phase 

U f Ddf + Dmfl : Diffusion coefficient tensor 

D 
s 

Molecular diffusion coefficient in solid phase 

Ddf Dispersion coefficient tensor in fluid phase 

8.2 

Dk~ Molecular diffusion coefficient of k-th species in~ -phase 

D c Molecular diffusion coefficient in fluid phase 
mr 

' -l 

- [ ~ ,( D~m- 6,--m) J Defined by (4, 122) 
~-J 

t~1li, ~*"' 
0 

'd 
i 

~ fD . lv : De f in e d by ( 6 , 4 ) 
l 

E(i,j,k):Function defined by (5.33) or (5.40) 

F (qS) : Gaussian distribution function defined by (4.33) 

f. (X, t): Source term of i-th nuclide in ¢-phase 
:LO( 

f.(Z,t): Source term of ith nuclide in water phase 
l 

( r) Defined by (4.23) 

Function defined by (6,77) and (6.78) 

: Fun c t i on d e f in e d b y ( 6 . 4 2 ) t o ( 6 . 4 5 ) o r ( 6 . 2 5 ) and ( 6 . 26 ) 
p 

Ci(z,t;~,T),Gi(z;~,T); Green function 

Gj_,G Function defined by (6.87) and (6.86) 
I -

9-c) 
p Function defined by (6,46) and (6.47) or (6.27) 

g. ( t) Function defined by (4.47b) 
l 



grm( t) 

j 

tj't, 
•m 

H(xcx) 

h(t~T) 

Q,I "" 
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Function defined by (4,124) 

Function defined by (6.48) to (6.54) 

Function defined by (6.28) 

Function defined by ( 2' 5) 

Heaviside step function 

Relative flux of k~th chemical species in ~-phase 

K. 
]_ 

Overall sorption equilibrium coefficient defined by (2,53) 

KDi Overall distribution coefficient defined by (2.5/) 
J 

k Leaching rate constant 

k, Leaching rate constant for i~th nuclide species 
1. 

defined by (3.18) 

Reaction rate constant for k~th chemical species 

defined by (2.58) 

KDk Distribution coefficient of k-th chemical species 
I 

between solid and water phase (2.49) 

Distribution coefficient of i~th nuclide between solid 

and water phases 

k,_ Rate coefficient for mineralization reaction 
.L 

Overall mass transfer coefficient for k-th chemical 

species 

Formation constant of t-th chemical species from k-th 

species in ~~phase 



L 

1., 1. 
l l 

MT 

M. ( t) 
l 

M.o 
l 
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Length of repository zone 

Partial differential operators defined by (3,34) 

and (6.2) 

Unit tensor 

Total amount of waste material 

Amount of i-th nuclide in the repository at time t 

Initial amount of i-th nuclide at the repository 

: Function defined by (6,55) and (6.56) 

Qt 

·mi (z,t;~,T): Green function satisfying (6,65) and (6.66) for 

oe "" R or 1 

N° Nuclide concentration in water phase r~:~Q/ value 
; 

N. ( t) 
l 

Concentration of i-th nuclide in water phase at the 

exit of the repository 

N (Z,t): Concentration of i-th nuclide in~- phase 
i. 

Concentration of i-th nuclide in water phase 

,\f ( j ) ( '"' 'c \ , 
, '" , J • Contribution of j-th nuclide at the repository to 

concentration of i-th nuclide 

I\' . ( t) : 
l,r 

Concentration of i-th nuclide defined by (4,84) 

m,x Unit normal vector pointing out of the interface from 

n. ( t) 
l 

rA •· phase 

Amount of nuclide ! per unit amount of waste 

n.(p,t):Laplace transform of N.(z,t) with respect to z 
J, l 
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ti) 
: Laplace transform of N,(z,t) with respect to z 

t 

dni(z,t:;,T): Green function satisfying (6,65) and (6,66) 

Q 

> ( y 
t > l 

r 

s 

so{ 

<X "" R or L 

Function defined by (6.81) and (6,82) 

:Function defined by (6.79) and (6,80), (6,84) and 

(6,85) 

Variable for Laplace transform with respect to z 

Volumetric flow rate of water 

Birth rate of k-th chemical species in «-phase 

Inverse transform of r. 
1 

. (p,t) 
1- '1 

Function defined by (4.55b) 

Effective cross-sectional area for water phase of 

the pathway 

Cross-sectional area of ~-phase 

S. 
1
(z,t): Function defined by (4.45b) 

l 

s~ Atomic number of i-th nuclide in k-th chemical 
l 

species 

8 '5 

s Variable for Laplace transform with respect to time t 

si-l(p,t): Laplace transform of Si-l(z,t) 

Fraction that i 1 chemical form is generated by 

the decay of (i-1)-th nuclide 

t Time 
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T Leach time or mean residence time of water phase 

in the repository zone 

T(p,t): Transform Kernal defined by (4.50) 

U . ( z, t ) : Fun c t i on d e f in e d by ( 4 .4 4 ) 
1 

u . ( p, t ); Lap 1 ace transform of U ~ ( z , t) 
1 

v 

v 

v. 
1 

v 
f 

Volume of averaging domain or water phase volume 

at repository 

water phase velocity 

Velocity in d ~ phase 

v/K. 
l 

Fluid phase velocity 

Interface velocity 

Position vector measured from the outer coordinate 

Position vector relative to X 

Position vector at interface 

z Distance along water pathway 

z. Repository position 
.L 

9, 
z Length of l~th layer 

9,rv 
z Relative distance from (£-1)-layer boundary 

a. 
l 

0. 
l 

6 .. 
lJ 

"' A.k. 
l l 

-A; () 2 '1 . 
t 

Parameter 

v/2D 

Defined by (4.42) 

Defined by (4,42) 

defined by (5.32) 

: Defined by (4,42) 

8.6 
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: Defined by (6.88) 

Parameter defined by (5.32) 

-I 

C' 
0 ( t) Dirac delta function 

Porosity 

Volume fraction of ~- phase 

Function defined by (6.29) 

Di/Ki 

Y( D/v 

A. + 'k. 
l l 

A. Decay constant of i-th nuclide 
:L 

( S+\1 )/ "Q 

k:.e-1 XR-t / K'e AQ 

Distance 

Defined by (4,110c) 

Defined by (4.110c) 

f Density of water phase 

0 
]0' 

T 

0. ( t) 
l 

Density of ~ phase 

Time 

Functions defined by (4,21) or (4,41) 

Dynamical property 

~ Dynamical property in oc - phase 
<X 

8. 7 
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Dynamical property defined by (2.6) 

Parameter defined by (6.89) 

Subscript 

i nuclide i 

k Chemical species k 

phase 

Superscript 

b band release 

e exponential release 

I impulse release 

p preferential release 

s step release 

Q,~th layer (superscript at left-hand side) 

Volume average defined by (2.8) 

Volume average defined by (2.7) 

8.8 
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APPENDIX - Computer Code 

A computer code named MGRATOl has been developed to 

calculate the migration of radionuclides with dispersion for 

both the band and the step release made up to three member 

chain, in a geologic media using the analytical expressions 

which are given in Section 5. 

The MGRATOl calcules the distribution either of the 

relative concentration in a water phase of each nuclide or 

of the discharge rate. along the time for fixed locations or 

along the location for fixed times. The code is constructed 

by a main program MGRAT, and three function programs, ELF, 

ERFC, ERF as attached lists of programs, Some rational ap-

proximation shown below are used to calculate the error 

1unct:Lon. 

and 

\- ~-- - + ecxJ 
[ 1-+ Q,'l-t Q,'{\ ----·+06X" )1\l 

Q, =. 07052 30784 

a,~ .oo927 o527Z 

0.).::::: • 0002'7 6S67~ 

p = '32759 1\ 

Q.,_ = -. 28449 b'r3 6 

Clt:= -1.45'315 2o21j 

Ch =. 04-228 20123 

Q4 = . 0 0 0 15 2 0 I 4 3 

Qb = .00004 30 638 

Q,= . .2'5482 9592 

Q~ c 1.4?.14-1 374\ 

0 5 = \. 06140 5"4Zg 

9.4 
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Due o the approximation, th absolute error of the code 

is less 
~' 7 

equal to 3x10 The development of the code has 

be n mad by using the CDC 6600 and 7600 of the Lawrence 

Berkeley Laboratory Computer Center. However, this code 

is va id when the value of Y ijk in (5.32) is positive. 

In the ca e of ijk<O, we can easily extend the code using 

ad rect numerical integration of the function E(i,j;k) in 

(5,33). The development of the code is now underway. 



**PROG~AM ~IGPDTIINPUT,OUTPUT,TAP =INPUT,TAPE6=0UTPUTI** 

PROGRAM MIGRATIINPUT,DUTPUT,TAPE5:1NDUT 1 TAPE6=0UTPUTl 
D I W~ ~~ S H 1\! A fl A lvl~ ! 5 • 1 H U F?: ( 5 ) ,cUR IN ( 5 ), C 0 '?:: f K ( 5 h T ( 2 ) , l { 2 • , F, ( 5 ) 1 AT( 5 I 

l 'v ( 5) 'c 2 ( 5) 'c 3 ( 15, '0 1( 21' I) 2 t s, 2) I 03 ( 15' 2) I CtH 5 I 'c M ( 5 ) 
1 RCG\Ili(3) 2 
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R~An(5,5~21 DIF,V2L,FL~,Tl 
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DO 5 I=l.,IC 
A= ALOGI2eJ/HLJF~Cil 

FUll= A 
tl. T ( I l = C UR I N ( 1 ) J( F L ~ * Tl ) 
IF ( I OM., H~., 1 ) ~ Tl U = AT ( 1) I A 

5 V ( I I "" \/;': L I C CE; ~ K ( I ) 

5"';: 
sr:· l 
5~' 2 

6·' 5 
6'6 

VMAX= A~AX11VIlJ,VI21,VI311 
V~IN= AMI~l(VC1J,V(2J,VC3JI 

CU~= Cli*CU"I~Cll/l.,l6683El8 
IF< ID~''il.,f:Q~l) CUR:o: CUP INI U 
il"" OlF/V2L 
Fr ~~;H(4Jll 
FORMATCA7,4F8.,0) 
!=(;{~ '1A T! 4 F 8 .. t:) 
FOR'"\AT { I2 t2fB.,''} 
I>JR!T (6~6(5) (Af\AM;(!l,l-l!L.! 

li=ldC) 
WFITEC6,6r6J DIF,VEL,FLW,TL 
FORMATCl X,A7,1PE15.3,*YP*,5El5.,31 
FORMATCl~X,!r4fl5.3,1HlJ 

R 12 = P ( U =R (?) 
'1 2 3"" ~d 2 i '~ ::u 3 } 
F. 1 "" F: ( 3 ,,., F ( 1 ) 

f/21"' -'Rl2 
-'· 32= ·~R 23 
P13= ~"P3l 

13 ! 
(li*0(2)*AT(l) 
AT ( 1) 

Pl?~ -AT(ll*RI1JIR12 
d22"" 
f3 ,, :3 "' 
f\ 2:"' 

s 1"" 
52"' 
53;:: 
F ~ ? "' 

F ;;::;, '" 
t: .. 1 
Vl 
V2 
v ?::::: 
IX"' 
TD= 

ATf 21-R12 
··RP/ ( R12*R3l » 
-Fr/(~l2*R231-~T12l*~l21/r23 

=R9/IR23*R311+,1(2J*RI21/F23+ATC31 
4,.ii(J 

1., IS Cif. T( V f l ) * C l 
1"'/SCJFT(V!ii*Cl 
L,/SCJ~T(VOH<O) 

( V ( ) I >;<~c: ( 2 l ·~ \1 { 2 ) * FU 1 } l I ( V { U = V ( 2 ) l 
( V ( 2 l * U 3 I,~ V (3 ) * R L< I ) I ( V ( 2 ) = \1 t 3 l I 
i V ( ?. I * F { 1 I = V ( 1 l * :v ( 3 ) )I ( V ( 3 ) ~ V ( 1 l I 
Vlll/04 
VI2UD4 
V!3liD4 

L ccrH P.JU ~ 
l!= EXPC=R(ll*lOI 
~ ~XPI-RI21*lDI 
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XP{ I* Dl 
fH:t * 1 
F1 2*'E.l 

!:H~1• Rl .l 
F122o;<E2 
R ~?. 2 

1 
3 

r\ 
B2 
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Hl 
82 
B 

NPUT,lAPE6=0UTPUTI** 
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c ( 4) 
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w 
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i {"') \fJD 
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c ( 21 trJD 
c (1'~~~ ~1/f.:\ ifoi[ 

C 3 ( 14 » l~A +\A: D 
l GU TD l 

D i U 
DO 11 

on 
l? D 31 

X 
:J 

GD T 

OD 
4 D f '~' 
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